热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

以椭圆的中心为圆心,为半径的圆称为该椭圆的“准圆”.设椭圆的左顶点为,左焦点为,上顶点为,且满足.

24.求椭圆及其“准圆”的方程;

25.若椭圆的“准圆”的一条弦(不与坐标轴垂直)与椭圆交于两点,试证明:当时,试问弦的长是否为定值,若是,求出该定值;若不是,请说明理由.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

设椭圆的左焦点,由,又,即,所以

则椭圆的方程为;椭圆的“准圆”方程为

考查方向

圆锥曲线;平面向量;椭圆的性质与特征;直线与圆锥曲线

解题思路

利用所给“准圆”的性质和椭圆的性质以及抛物线的性质求椭圆的方程和准圆方程,利用平面向量的数量积结合圆锥曲线相关性质计算求解。

易错点

计算能力弱

第(2)小题正确答案及相关解析

正确答案

见解析

解析

设直线的方程为,且与椭圆的交点

联列方程组   代入消元得:

 ,可得 由, 所以

此时成立,

则原点到弦的距离,

得原点到弦的距离为,则,故弦的长为定值

考查方向

圆锥曲线;平面向量;椭圆的性质与特征;直线与圆锥曲线

解题思路

利用所给“准圆”的性质和椭圆的性质以及抛物线的性质求椭圆的方程和准圆方程,利用平面向量的数量积结合圆锥曲线相关性质计算求解。

易错点

计算能力弱

1
题型:简答题
|
简答题 · 12 分

已知AB分别是椭圆的左右顶点,离心率为,右焦点与抛物线的焦点F重合.

25.求椭圆C的方程;

26.已知点P是椭圆C上异于AB的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:QPB三点共线.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

抛物线的焦点F(1,0),∵,∴a=2,∴,∴椭圆方程为.

考查方向

圆锥曲线;平面向量;椭圆的性质与特征;抛物线的性质与特征;直线与圆锥曲线

解题思路

利用离心率和椭圆的性质以及抛物线的性质求椭圆的方程,利用直线与圆锥曲线方程证明三点共线。

易错点

计算能力弱

第(2)小题正确答案及相关解析

正确答案

见解析

解析

由25题知直线l的方程为x=-2,∵点P异于A,B,∴直线AP的斜率存在且不为0,设AP的方程为,联立

,∴.

又∵QF⊥AP,,∴直线QF的方程为,联立,解得交点

,有公共点Q,所以Q,P,B三点共线

考查方向

圆锥曲线;平面向量;椭圆的性质与特征;抛物线的性质与特征;直线与圆锥曲线

解题思路

利用离心率和椭圆的性质以及抛物线的性质求椭圆的方程,利用直线与圆锥曲线方程证明三点共线。

易错点

计算能力弱

1
题型:简答题
|
简答题 · 12 分

已知直线与椭圆相交于两个不同的点,记轴的交点为

25.若,且,求实数的值;

26.若,求面积的最大值,及此时椭圆的方程.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

解:设直线l与椭圆的两个交点坐标为

考查方向

椭圆的性质与特征;直线与圆锥曲线的综合问题

解题思路

联立方程组,消去参数,利用基本不等式判断

易错点

计算错误;找不到最大值

第(2)小题正确答案及相关解析

正确答案

见解析

解析

,代入上式得:

当且仅当时取等号,此时

,因此

所以,面积的最大值为,此时椭圆的方程为

考查方向

椭圆的性质与特征;直线与圆锥曲线的综合问题

解题思路

联立方程组,消去参数,利用基本不等式判断

易错点

计算错误;找不到最大值

1
题型:简答题
|
简答题 · 13 分

如图所示的封闭曲线C由曲线和曲线组成,已知曲线过点,离心率为,点A,B分别为曲线C与x轴、y轴的一个交点.

24.求曲线的方程;

25.若点Q是曲线上的任意点,求面积的最大值及点Q的坐标;

26.若点F为曲线的右焦点,直线与曲线相切于点M,且与直线交于点N,求证:以MN为直径的圆过点F.

第(1)小题正确答案及相关解析

正确答案

见解析

解析

考查方向

本题考察了椭圆的定义及标准方程,考察了抛物线方程,考察了圆锥曲线中的最值问题,考察了与已知直线平行的直线方程,考察了圆的基本性质,考察了圆锥曲线的定点、定值问题,

解题思路

根据离心率和点求出曲线,求出交点确定

易错点

本题易错于1、曲线方程求错,特别是曲线 2、第二问Q点位置的确定,使用直接法会极大的增加运算过程,且很容易出错,第三问,主要是在圆的几何性质上使用出错

第(2)小题正确答案及相关解析

正确答案

见解析

解析

考查方向

本题考察了椭圆的定义及标准方程,考察了抛物线方程,考察了圆锥曲线中的最值问题,考察了与已知直线平行的直线方程,考察了圆的基本性质,考察了圆锥曲线的定点、定值问题,

解题思路

求出直线AB,判定面积最大是恰好是与AB平行且与曲线相切时,利用平行线及切线的判定求出面积的最大值及其点的坐标

易错点

本题易错于

1、曲线方程求错,特别是曲线 

2、第二问Q点位置的确定,使用直接法会极大的增加运算过程,且很容易出错,第三问,主要是在圆的几何性质上使用出错

第(3)小题正确答案及相关解析

正确答案

见解析

解析

考查方向

本题考察了椭圆的定义及标准方程,考察了抛物线方程,考察了圆锥曲线中的最值问题,考察了与已知直线平行的直线方程,考察了圆的基本性质,考察了圆锥曲线的定点、定值问题,

解题思路

设出直线方程,利用与曲线联立,根据相切确定k,m的关系以及确定切点M的坐标,与直线联立求出点N的坐标

借助圆的几何性质

易错点

本题易错于1、曲线方程求错,特别是曲线 2、第二问Q点位置的确定,使用直接法会极大的增加运算过程,且很容易出错,第三问,主要是在圆的几何性质上使用出错

1
题型:简答题
|
简答题 · 12 分

如图,曲线由上半椭圆和部分抛物线 连接而成,的公共点为,其中的离心率为.

23.求的值;

24.过点的直线分别交于(均异于点),若,求直线的方程.

第(1)小题正确答案及相关解析

正确答案

(1);

解析

(Ⅰ)因为抛物线轴交于点,所以

由因为,所以椭圆方程为

考查方向

本题主要考查圆锥曲线的性质和直线与圆锥曲线的位置关系等知识,意在考查考生的运算求解能力和综合解决问题的能力。

解题思路

先根据抛物线与x轴的交点求出b的值,后利用离心率求出a的值;

易错点

不知道抛物线与x轴的交点即为b的值;

第(2)小题正确答案及相关解析

正确答案

(2)

解析

(Ⅱ)因为,若过点的直线斜率不存在时,不满足题意,所以直线斜率存在,

设直线的斜率为,则直线的方程为,设,联立,所以,所以 联立所以,所以

化简得,所以,所以直线的方程为

考查方向

本题主要考查圆锥曲线的性质和直线与圆锥曲线的位置关系等知识,意在考查考生的运算求解能力和综合解决问题的能力。

解题思路

设出直线的方程后分别与椭圆和抛物线的方程联立消元导出求出P,Q 的坐标后带入解方程即可。

易错点

不会转化 导致问题找不到突破口。

百度题库 > 高考 > 理科数学 > 椭圆的几何性质

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题