- 椭圆的几何性质
- 共178题
以椭圆









24.求椭圆
25.若椭圆






正确答案
见解析
解析
设椭圆







则椭圆


考查方向
解题思路
利用所给“准圆”的性质和椭圆的性质以及抛物线的性质求椭圆的方程和准圆方程,利用平面向量的数量积结合圆锥曲线相关性质计算求解。
易错点
计算能力弱
正确答案
见解析
解析
设直线



联列方程组
由




此时
则原点


得原点




考查方向
解题思路
利用所给“准圆”的性质和椭圆的性质以及抛物线的性质求椭圆的方程和准圆方程,利用平面向量的数量积结合圆锥曲线相关性质计算求解。
易错点
计算能力弱
已知A、B分别是椭圆



25.求椭圆C的方程;
26.已知点P是椭圆C上异于A、B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:Q、P、B三点共线.
正确答案
见解析
解析
抛物线的焦点F(1,0),∵


考查方向
解题思路
利用离心率和椭圆的性质以及抛物线的性质求椭圆的方程,利用直线与圆锥曲线方程证明三点共线。
易错点
计算能力弱
正确答案
见解析
解析
由25题知直线l的方程为x=-2,∵点P异于A,B,∴直线AP的斜率存在且不为0,设AP的方程为




又∵QF⊥AP,




即
考查方向
解题思路
利用离心率和椭圆的性质以及抛物线的性质求椭圆的方程,利用直线与圆锥曲线方程证明三点共线。
易错点
计算能力弱
已知直线





25.若


26.若

正确答案
见解析
解析
解:设直线l与椭圆的两个交点坐标为


考查方向
解题思路
联立方程组,消去参数,利用基本不等式判断
易错点
计算错误;找不到最大值
正确答案
见解析
解析


由


当且仅当

又

所以,


考查方向
解题思路
联立方程组,消去参数,利用基本不等式判断
易错点
计算错误;找不到最大值
如图所示的封闭曲线C由曲线




24.求曲线
25.若点Q是曲线

26.若点F为曲线



正确答案
见解析
解析
考查方向
解题思路
根据离心率和点求出曲线
易错点
本题易错于1、曲线方程求错,特别是曲线
正确答案
见解析
解析
考查方向
解题思路
求出直线AB,判定面积最大是恰好是与AB平行且与曲线
易错点
本题易错于
1、曲线方程求错,特别是曲线
2、第二问Q点位置的确定,使用直接法会极大的增加运算过程,且很容易出错,第三问,主要是在圆的几何性质上使用出错
正确答案
见解析
解析
考查方向
解题思路
设出直线方程,利用与曲线

借助圆的几何性质
易错点
本题易错于1、曲线方程求错,特别是曲线
如图,曲线







23.求
24.过点






正确答案
(1)
解析
(Ⅰ)因为抛物线


由因为
考查方向
解题思路
先根据抛物线与x轴的交点求出b的值,后利用离心率求出a的值;
易错点
不知道抛物线与x轴的交点即为b的值;
正确答案
(2)
解析
(Ⅱ)因为



设直线









由
化简得



考查方向
解题思路
设出直线

易错点
不会转化
扫码查看完整答案与解析

































