热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题 · 20 分

请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。

正确答案

测试

1
题型:填空题
|
填空题 · 20 分

请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。

正确答案

测试

1
题型:简答题
|
简答题 · 12 分

电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性。

(1)              根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?

(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率。

附:

正确答案

(1) 有关;(2)

解析

(1)

由频率分布直方图可知,在抽取的100人中,“体育迷”为25人,从而完成2×2列联表如下:

将2×2列联表中的数据代入公式计算,得

因为3.030<3.841,所以我们没有理由认为“体育迷”与性别有关。

(2)由频率分布直方图可知,“超级体育迷”为5人,从而一切可能结果所组成的基本事件空间为

Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}。

其中ai表示男性,i=1,2,3。bj表示女性,j=1,2。

Ω由10个基本事件组成,而且这些基本事件的出现是等可能的。

用A表示“任选2人中,至少有1人是女性”这一事件,则

A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},

事件A由7个基本事件组成,因而

知识点

频率分布直方图独立性检验的应用
1
题型: 单选题
|
单选题 · 5       分

某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100],若低于60分的人数是15,则该班的学生人数是(  )。

A45

B50

C55

D60

正确答案

B

解析

根据频率分布直方图,低于60分的人所占频率为:(0.005+0.01)×20=0.3,故该班的学生数为=50,故选B.

知识点

频率分布直方图
1
题型:简答题
|
简答题 · 13 分

某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了n人,回答问题统计结果如下图表所示:

(1)分别求出a,b,x,y的值;

(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组各抽取多少人?

(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率。

正确答案

见解析。

解析

(1)由频率表中第1组数据可知,第1组总人数为

再结合频率分布直方图可知.

∴a=100×0.020×10×0.9=18,

b=100×0.025×10×0.36=9,

,

(2)第2,3,4组中回答正确的共有54人。

∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:

第2组:人,

第3组:人,

第4组:人。

(3)设第2组的2人为,第3组的3人为,第4组的1人为则从6人中抽2人所有可能的结果有:,共15个基本事件,

其中第2组至少有1人被抽中的有这9个基本事件。

∴第2组至少有1人获得幸运奖的概率为

知识点

古典概型的概率分层抽样方法频率分布表频率分布直方图
1
题型:简答题
|
简答题 · 12 分

对某电子元件进行寿命追踪调查,所得情况如下频率分布直方图。

(1)图中纵坐标处刻度不清,根据图表所提供的数据还原

(2)根据图表的数据按分层抽样,抽取个元件,寿命为之间的应抽取几个;

(3)从(2)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个寿命为,一个寿命为”的概率。

正确答案

见解析。

解析

(1)根据题意:

解得

(2)设在寿命为之间的应抽取个,根据分层抽样有:

解得:

所以应在寿命为之间的应抽取

(3)记“恰好有一个寿命为,一个寿命为”为事件,由(2)知

寿命落在之间的元件有个分别记,落在之间的元件有

个分别记为:,从中任取个球,有如下基本事件:

,共有个基本事件

事件 “恰好有一个寿命为,一个寿命为”有:

共有个基本事件

答:事件“恰好有一个寿命为,另一个寿命为”的概率为

知识点

古典概型的概率分层抽样方法频率分布直方图
1
题型:填空题
|
填空题 · 5 分

根据某固定测速点测得的某时段内过往的100辆机动车的行驶速度(单位:km/h)绘制的频率分布直方图如图(3)所示,该路段限速标志牌提示机动车辆正常行驶速度为60 km/h~120 km/h,则该时段内过往的这100辆机动车中属非正常行驶的有      辆,图中的x值为     。

正确答案

15;0.0175

解析

由直方图可知,这100辆机动车中属非正常行驶的有(辆),x的值=.

知识点

频率分布直方图
1
题型:填空题
|
填空题 · 4 分

某工厂对一批产品进行抽样检测,根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图如图所示,已知产品净重的范围是区间,样本中净重在区间的产品个数是,则样本中净重在区间的产品个数是                。

正确答案

44

解析

知识点

频率分布直方图
1
题型:简答题
|
简答题 · 13 分

某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分布直方图(如图),已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间的有8人。

(1)求直方图中的值及甲班学生学习时间在区间的人数;

(2)从甲、乙两个班每天平均学习时间大于小时的同学中任取人参加测试,则人中恰有人为甲班同学的概率;

正确答案

(1)2

(2)

解析

(1)由直方图知,,解得

因为甲班学习时间在区间的有人,

所以甲班的学生人数为,所以甲、乙两班人数均为人。

所以甲班学习时间在区间的人数为(人),6分

(2)乙班学习时间在区间的人数为(人)。

由(1)知甲班学习时间在区间的人数为人。

甲班的人记为,乙班的人记为

设“四人中恰有人为甲班同学”为事件

从两个班中学习时间大于小时的名同学中抽取四人的所有可能情况为:

,共种。

四人中恰有人为甲班同学的所有可能情况为种。

,………………13分

知识点

古典概型的概率频率分布直方图
1
题型: 单选题
|
单选题 · 5 分

有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为(  )

A18

B36

C54

D72

正确答案

B

解析

因为落在[2,10]内的频率为×2=0.82,所以落在[10,12)内的频率为1-0.82=0.18,故落在[10,12)内的频数为200×0.18=36.

知识点

随机事件的频率与概率频率分布直方图
下一知识点 : 频率分布折线图、密度曲线
百度题库 > 高考 > 文科数学 > 频率分布直方图

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题