- 类比推理
- 共13题
7.在共有2013项的等差数列{an}中,有等式(a1+a3+…+a2013)-(a2+a4+…+a2012)=a1007成立;类比上述性质,在共有2011项的等比数列{bn}中,相应的有等式( )成立。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
14.求“方程5x+12x=13x的解”有如下解题思路:设f(x)=()x+()x,则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2.类比上述解题思路,方程x3+x=+的解为________.
正确答案
x=-1或x=1
解析
类比上述解题思路,设f(x)=x3+x,由于f'(x)=3x2+1≥0,则f(x)在R上单调递增,∵x3+x=+,∴x=,解得x=-1或x=1.
知识点
29.在平面直角坐标系中,对于点、直线,我们称为点到直线的方向距离。
(1)设椭圆上的任意一点到直线的方向距离分别为,求的取值范围。
(2)设点、到直线:的方向距离分别为、,试问是否存在实数,对任意的都有成立?若存在,求出的值;不存在,说明理由。
(3)已知直线:和椭圆:(),设椭圆的两个焦点到直线的方向距离分别为、满足,且直线与轴的交点为、与轴的交点为,试比较的长与的大小。
正确答案
(1);
(2);
(3)
(1)由点在椭圆上,所以
由题意、,于是
又得,即
(也可以先求出,再利用基本不等式易得)
(2)假设存在实数,满足题设,
由题意,
于是
对任意的都成立
只要即可,所以
故存在实数,,对任意的都有成立。
(学生通过联想,判断直线是椭圆的切线,又证明从而得到也给分)
(3)设的坐标分别为、,于是
、于是
又,即
所以
综上
解析
试题分析:本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难,
(1)直接按照步骤来求
(2)要注意对参数的讨论.
考查方向
本题考查了直线与椭圆的位置关系,属于高考中的高频考点
解题思路
本题考查圆锥曲线与直线的位置关系,解题步骤如下:
1、利用新定义求解。
2、联立直线与椭圆方程求解。
易错点
第二问中表示直线斜率时容易出错。
知识点
扫码查看完整答案与解析