- 进行简单的合情推理
- 共19题
设,以
间的整数为分子,以
为分母组成分数集合
,其所有元素和为
;以
间的整数为分子,以
为分母组成不属于集合
的分数集合
,其所有元素和为
;……,依次类推以
间的整数为分子,以
为分母组成不属于
的分数集合
,其所有元素和为
;则
=________.
正确答案
解析
略
知识点
已知集合,对于
,
,定义
;
;
与
之间的距离为
。
(1)当时,设
,
,若
,求
;
(2)(ⅰ)证明:若,且
,使
,则
;
(ⅱ)设,且
,是否一定
,使
?
说明理由;
(3)记,若
,
,且
,求
的最大值。
正确答案
见解析
解析
(1)解:当时,由
,
得 ,即
。
由 ,得
,或
。 ………………3分
(2)(ⅰ)证明:设,
,
。
因为 ,使
,
所以 ,使得
,
即 ,使得
,其中
。
所以 与
同为非负数或同为负数。 ………………5分
所以
。 ………………6分
(ⅱ)解:设,且
,此时不一定
,使得
。 ………………7分
反例如下:取,
,
,
则 ,
,
,显然
。
因为,
,
所以不存在,使得
。 ………………8分
(3)解法一:因为 ,
设中有
项为非负数,
项为负数,不妨设
时
;
时,
。
所以
因为 ,
所以 , 整理得
。
所以 。……………10分
因为
;
又 ,
所以
。
即 。 ……………12分
对于 ,
,有
,
,且
,
。
综上,的最大值为
。 ……………13分
解法二:首先证明如下引理:设,则有
。
证明:因为 ,
,
所以 ,
即 。
所以
。 ……………11分
上式等号成立的条件为,或
,所以
。 ……………12分
对于 ,
,有
,
,且
,
。
综上,的最大值为
。 ……………13分
知识点
设,且满足:
,
,则
_________.
正确答案
解析
略
知识点
若存在正实数,对于任意
,都有
,则称函数
在
上是有界函数,下列函数
① ;②
;③
;④
,
其中“在上是有界函数”的序号为__________。
正确答案
②③
解析
略
知识点
在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”,类似的,我们在平面向量集上也可以定义一个称为“序”的关系,记为“
”.定义如下:对于任意两个向量
当且仅当“
”或“
”.按上述定义的关系“
”,给出如下四个命题:
①若;
②若;
③若,则对于任意
;
④对于任意向量.
其中真命题的序号为
正确答案
解析
略
知识点
扫码查看完整答案与解析