- 进行简单的合情推理
- 共19题
设,以间的整数为分子,以为分母组成分数集合,其所有元素和为;以间的整数为分子,以为分母组成不属于集合的分数集合,其所有元素和为;……,依次类推以间的整数为分子,以为分母组成不属于的分数集合,其所有元素和为;则=________.
正确答案
解析
略
知识点
已知集合,对于,,定义;
;与之间的距离为。
(1)当时,设,,若,求;
(2)(ⅰ)证明:若,且,使,则;
(ⅱ)设,且,是否一定,使?
说明理由;
(3)记,若,,且,求的最大值。
正确答案
见解析
解析
(1)解:当时,由,
得 ,即 。
由 ,得 ,或。 ………………3分
(2)(ⅰ)证明:设,,。
因为 ,使 ,
所以 ,使得 ,
即 ,使得 ,其中。
所以 与同为非负数或同为负数。 ………………5分
所以
。 ………………6分
(ⅱ)解:设,且,此时不一定,使得
。 ………………7分
反例如下:取,,,
则 ,,,显然。
因为,,
所以不存在,使得。 ………………8分
(3)解法一:因为 ,
设中有项为非负数,项为负数,不妨设时;时,。
所以
因为 ,
所以 , 整理得 。
所以 。……………10分
因为
;
又 ,
所以
。
即 。 ……………12分
对于 ,,有 ,,且,
。
综上,的最大值为。 ……………13分
解法二:首先证明如下引理:设,则有 。
证明:因为 ,,
所以 ,
即 。
所以
。 ……………11分
上式等号成立的条件为,或,所以 。 ……………12分
对于 ,,有 ,,且,
。
综上,的最大值为。 ……………13分
知识点
设,且满足:,,则_________.
正确答案
解析
略
知识点
若存在正实数,对于任意,都有,则称函数在上是有界函数,下列函数
① ;②;③;④,
其中“在上是有界函数”的序号为__________。
正确答案
②③
解析
略
知识点
在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”,类似的,我们在平面向量集上也可以定义一个称为“序”的关系,记为“”.定义如下:对于任意两个向量当且仅当“”或“”.按上述定义的关系“”,给出如下四个命题:
①若;
②若;
③若,则对于任意;
④对于任意向量.
其中真命题的序号为
正确答案
解析
略
知识点
扫码查看完整答案与解析