- 正弦函数的单调性
- 共119题
9.定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是 .
正确答案
7
知识点
15.已知函数f(x)=4tanxsin()cos(
)-
.
(Ⅰ)求f(x)的定义域与最小正周期;
(Ⅱ)讨论f(x)在区间[]上的单调性.
正确答案
解:
的定义域为
.
.
所以, 的最小正周期
解析
令
函数
的单调递增区间是
由,得
设,易知
.
所以, 当时,
在区间
上单调递增, 在区间
上单调递减
知识点
15.已知函数,
.
(Ⅰ)求的最小正周期和单调递增区间;
(Ⅱ)设,若函数
为奇函数,求
的最小值。
正确答案
(Ⅰ),
,
;(Ⅱ)
.
解析
试题分析:本题属于三角函数的基本问题,题目的难度是逐渐由易到难,(1)直接按步骤来求,(2)要注意三角恒等变换的正确性;
(Ⅰ)解:
,
所以函数的最小正周期
.
由,
,
得,
所以函数的单调递增区间为
,
.
(注:或者写成单调递增区间为,
.
(Ⅱ)解:由题意,得,
因为函数为奇函数,且
,
所以,即
,
所以,
,
解得,
,验证知其符合题意.
又因为,
所以的最小值为
.
考查方向
本题主要考查了三角恒等变换以及三角函数的图象与性质,三角函数的性质的考查主要分以下几类:
1.三角函数的定义域,
2.三角函数的单调性与最值,
3.三角函数的周期性,
4.三角函数的奇偶性或对称性.
解题思路
本题考查三角恒等变换、三角函数的图象与性质,解题步骤如下:1.利用二倍角公式和配角公式将函数化成
;2.利用正弦函数的周期公式求得函数
的周期;3.利用整体思想和三角函数的单调性求其单调递增区间;4.由函数
是奇函数,得到
,再求角的取值。
易错点
1、第一问中的单调递增区间易错误写成集合的形式,或丢掉“”的注明;
2、第二问中易利用错误得到
。
知识点
16.已知函数,
.
(Ⅰ)求函数的最小正周期.
(Ⅱ)若,求函数
的单调增区间.
正确答案
(Ⅰ)函数的最小正周期
(Ⅱ)的增区间为
,
解析
本题第二问特别要注意:一定要结合函数的定义域正确书写增区间.
,
所以函数的最小正周期
.
(Ⅱ)解:由,
,
得,
所以函数的单调递增区间为
,
.
所以当时,
的增区间为
,
.
(注:或者写成增区间为,
.
考查方向
解题思路
本题主要考查正、余弦的二倍角公式及型函数的性质,解题步骤如下:
1、把展开进行化简,得出
型函数;
2、由型函数最小正周期计算公式
求解第一个问题;
3、最后通过单调区间的求法结合定义域解答第二问。
易错点
本题体现了三角函数部分的基本的解题思想方法,为学生非常熟悉的题型对于第二问可能由于思维定势审题不全忽略前提条件而错解;或是对单调区间的表达方式不正确如
.而出错。
知识点
(本小题满分13分)
已知函数,
.
(Ⅰ)若,求
的单调递增区
间;
(Ⅱ)若,求
的最小正周期
的表达式并指出
的最大值.
正确答案
考查方向
易错点
1、本题在第一问的化简中用辅助角公式时易出错。
知识点
扫码查看完整答案与解析