- 棱柱、棱锥、棱台的体积
- 共170题
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点。
(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积。
(锥体体积公式V=
正确答案
见解析
解析
(1)证法一:连结AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,
所以M为AB′中点。
又因为N为B′C′的中点,
所以MN∥AC′。
又MN

因此MN∥平面A′ACC′。
证法二:取A′B′中点P,连结MP,NP,
而M,N分别为AB′与B′C′的中点,
所以MP∥AA′,PN∥A′C′,
所以MP∥平面A′ACC′,
PN∥平面A′ACC′。
又MP∩NP=P,
因此平面MPN∥平面A′ACC′。
而MN
因此MN∥平面A′ACC′。
(2) (2)解法一:连结BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC。
又A′N=
故VA′-MNC=VN-A′MC=


解法二:VA′-MNC=VA′-NBC-VM-NBC=
知识点
《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈

正确答案
解析
设圆锥底面圆的半径为r,高为h,则L=(2πr)2,
∴

∴π=
知识点
如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )
正确答案
解析
几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,
组合体体积是:32π•2+22π•4=34π,底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π。
切削掉部分的体积与原来毛坯体积的比值为:
知识点
设图1是某几何体的三视图,则该几何体的体积为
正确答案
解析
有三视图可知该几何体是一个长方体和球构成的组合体,其体积
知识点
如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点。
(1)证明:PB∥平面AEC;
(2)设AP=1,AD=

正确答案
见解析。
解析
(1)证明:设BD与AC 的交点为O,连结EO,∵ABCD是矩形,∴O为BD的中点
∵E为PD的中点,∴EO∥PB,EO⊂平面AEC,PB⊄平面AEC∴PB∥平面AEC;
(2)∵AP=1,AD=



∴AB=
又
知识点
如图,正方体


正确答案
解析
以△

知识点
如图,四棱锥



(1)证明:
(2)若


正确答案
见解析
解析
(1)证明:连接


又
而



(2) 由(1)

知识点
一个几何体的三视图如图所示,则该几何体的体积为__________。
正确答案
12+π
解析
如图所示,由已知得该几何体为一组合体,上面是底面圆半径为1,高为1的圆柱,下面是长为4,宽为3,高为1的长方体,如图所示。
故所求体积V=π×12×1+4×3×1=12+π。
知识点
某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是(锥体体积公式:
正确答案
解析
由俯视图知该三棱锥的底面积

所以
知识点
扫码查看完整答案与解析




































