热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

某几何体的三视图如图2所示(单位:cm),则该几何体的体积是

A

B

C

D

正确答案

D

解析

知识点

简单空间图形的三视图棱柱、棱锥、棱台的体积
1
题型:简答题
|
简答题 · 13 分

如图5,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知.

(1)求证:OD//平面VBC;

(2)求证:AC⊥平面VOD;

(3)求棱锥的体积.

正确答案

见解析。

解析

(1)∵ O、D分别是AB和AC的中点,∴OD//BC .

面VBC,面VBC,∴OD//平面VBC.

(2)∵VA=VB,O为AB中点,∴.

连接,在中,,

≌VOC ,∴=VOC=90,  ∴.

, 平面ABC, 平面ABC, ∴VO⊥平面ABC.

平面ABC,∴.

又∵的中点,∴.

∵VO平面VOD,VD平面VOD,,∴ AC平面DOV.

(3)由(2)知是棱锥的高,且.

又∵点C是弧的中点,∴,且

∴三角形的面积

∴棱锥的体积为

故棱锥的体积为.

知识点

旋转体(圆柱、圆锥、圆台)棱柱、棱锥、棱台的体积直线与平面平行的判定与性质直线与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 13 分

如图3,在四棱锥中,底面ABCD是边长为2的菱形,且DAB=60. 侧面PAD为正三角形,其所在的平面垂直于底面ABCD,G为AD边的中点.

(1)求证:BG平面PAD;

(2)求三棱锥G—CDP的体积;

(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF平面ABCD,并证明你的结论.

正确答案

见解析。

解析

证明:连结BD.

因为ABCD为棱形,且∠DAB=60°,所以ABD为正三角形.

又G为AD的中点,所以BG⊥AD.

又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,

∴BG⊥平面PAD.

(2)因为G为正三角形PAD的边AD的中点,所以PGAD.

又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,

所以PG⊥平面ABCD.

因为正三角形PAD的边长为2,所以.

在CDG中,CD=2,DG=1,∠CDG=120°,

所以.

.

(3)当F为PC的中点时,平面DEF⊥平面ABCD.

取PC的中点F,连结DE,EF,DF,CG,且DE与CG相交于H.

因为E、G分别为BC、AD的中点,所以四边形CDGE为平行四边形.

故H为CG的中点. 又F为CP的中点,所以FH//PG.

由(2),得PG平面ABCD,所以FH平面ABCD.

又FH平面DEF,所以平面DEF⊥平面ABCD.

知识点

棱柱、棱锥、棱台的体积直线与平面垂直的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 14 分

如图,已知三棱锥A—BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形。

(1)求证:DM//平面APC;

(2)求 证:平面ABC⊥平面APC;

(3)若BC=4,AB=20,求三棱锥D—BCM的体积。

正确答案

见解析。

解析

知识点

棱柱、棱锥、棱台的体积直线与平面平行的判定与性质平面与平面垂直的判定与性质
1
题型:填空题
|
填空题 · 4 分

若正三棱柱的主视图如图所示,则此三棱柱的体积等于     。

正确答案

解析

知识点

棱柱、棱锥、棱台的体积
下一知识点 : 球的体积和表面积
百度题库 > 高考 > 文科数学 > 棱柱、棱锥、棱台的体积

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题