- 棱柱、棱锥、棱台的体积
- 共170题
已知在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=1,E,F分别是AB、PD的中点。
(1)求证:AF⊥平面PDC;
(2)求三棱锥B﹣PEC的体积;
(3)求证:AF∥平面PEC。
正确答案
见解析。
解析
(1)证明:∵PA⊥平面ABCD,∴PA⊥CD,
由底面ABCD是矩形,∴CD⊥DA,又PA∩AD=A,∴CD⊥平面PAD,
∴CD⊥AF。
∵PA=AD=1,F是PD的中点,
∴AF⊥PD,
又PD∩DC=D,∴AF⊥平面PDC。
(2)解:=
,
∵PA⊥平面ABCD,
VB﹣PEC=VP﹣BEC==
。
(3)
取PC得中点M,连接MF、ME。
∵,
,E是AB的中点,∴
,
∴四边形AEMF是平行四边形,
∴AF∥EM。
又AF⊄平面PEC,EM⊂平面PEC,
∴AF∥平面PEC。
知识点
如图,直三棱柱中,
,
(1)求直三棱柱的体积;
(2)若是
的中点,求异面直线
与
所成的角。
正确答案
(1)4(2)
解析
解析:(1)
(2)设是
的中点,连结
,
是异面直线
与
所成的角。
在中,
即
异面直线
与
所成的角为
。
知识点
如图,在三棱锥中,
平面
,
,
为侧棱
上一点,它的正(主)视图和侧(左)视图如图所示。
(1)证明:平面
;
(2)求三棱锥的体积;
(3)在的平分线上确定一点
,使得
平面
,并求此时
的长。
正确答案
见解析。
解析
(1)因为平面
,所以
,
又,所以
平面
,所以
。
由三视图可得,在中,
,
为
中点,所以
,所以
平面
。
(2)由三视图可得,
由⑴知,
平面
,
又三棱锥的体积即为三棱锥
的体积,
所以,所求三棱锥的体积,
(3)取的中点
,连接
并延长至
,使得
,点
即为所求。
因为为
中点,所以
,
因为平面
,
平面
,所以
平面
,连接
,
,四边形
的对角线互相平分,所以
为平行四边形,所以
,又
平面
,所以在直角
中,
。
知识点
如图1,在直角梯形中,
,
,
.将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(1) 求证:平面
(2) 求几何体
的体积。
正确答案
见解析。
解析
解:(1)在图1中,可得,从而
,故
取中点
连结
,则
,又面
面
,
面面
,
面
,从而
平面
,
∴
又,
,
∴平面
另解:在图1中,可得,从而
,故
∵面ACD面
,面ACD
面
,
面
,从而
平面
(2) 由(1)可知为三棱锥
的高.
,
所以
由等积性可知几何体的体积为
知识点
已知四棱锥的底面
是直角梯形,
,
,侧面
为正三角形,
,
,如图4所示。
(1) 证明:平面
;
(2) 求三棱锥的体积
。
正确答案
见解析
解析
(1) 直角梯形
的
,
,又
,
,
∴。
∴在△和△
中,有
,
。
∴且
。
∴。
(2)∵,
是正三角形,
∴,结合几何体可知
,
∴。
知识点
扫码查看完整答案与解析