- 棱柱、棱锥、棱台的体积
- 共170题
如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点。
(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积。
(锥体体积公式V=Sh,其中S为底面面积,h为高)
正确答案
见解析
解析
(1)证法一:连结AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,
所以M为AB′中点。
又因为N为B′C′的中点,
所以MN∥AC′。
又MN平面A′ACC′,AC′平面A′ACC′,
因此MN∥平面A′ACC′。
证法二:取A′B′中点P,连结MP,NP,
而M,N分别为AB′与B′C′的中点,
所以MP∥AA′,PN∥A′C′,
所以MP∥平面A′ACC′,
PN∥平面A′ACC′。
又MP∩NP=P,
因此平面MPN∥平面A′ACC′。
而MN平面MPN,
因此MN∥平面A′ACC′。
(2) (2)解法一:连结BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC。
又A′N=B′C′=1,
故VA′-MNC=VN-A′MC=VN-A′BC=VA′-NBC=。
解法二:VA′-MNC=VA′-NBC-VM-NBC=VA′-NBC=
知识点
设图1是某几何体的三视图,则该几何体的体积为
正确答案
解析
有三视图可知该几何体是一个长方体和球构成的组合体,其体积。
知识点
如图,正方体的棱长为1,E为线段上的一点,则三棱锥的体积为_____。
正确答案
解析
以△为底面,则易知三棱锥的高为1,故.
知识点
如图,四棱锥的底面是边长为2的菱形,.已知 。
(1)证明:
(2)若为的中点,求三菱锥的体积。
正确答案
见解析
解析
(1)证明:连接交于点
又是菱形
而 ⊥面 ⊥
(2) 由(1)⊥面
=
知识点
一个几何体的三视图如图所示,则该几何体的体积为__________。
正确答案
12+π
解析
如图所示,由已知得该几何体为一组合体,上面是底面圆半径为1,高为1的圆柱,下面是长为4,宽为3,高为1的长方体,如图所示。
故所求体积V=π×12×1+4×3×1=12+π。
知识点
扫码查看完整答案与解析