热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

已知数列:1,2,2,4,8,32,…,写出这个数列的一个递推公式.

正确答案

解:由数列:1,2,2,4,8,32,…,可得这个数列的一个递推公式a1=1,a2=2,an+2=anan+1

解析

解:由数列:1,2,2,4,8,32,…,可得这个数列的一个递推公式a1=1,a2=2,an+2=anan+1

1
题型: 单选题
|
单选题

已知数列:,依它的前10项的规律,这个数列的第2010项a2010=(  )

A

B

C

D

正确答案

A

解析

解:根据前10项的规律,我们可推知:

第N大项为

此时1+2+3+…+N=

当N=62时,共有1953项,

当N=63时,共有2016项,

所以:项a2010= 

故选A

1
题型:简答题
|
简答题

已知数列{an}的通项公式an=n2+n,则420是{an}的项吗?若是,求出是第几项?

正确答案

解:令an=n2+n=420,解得n=20.

∴420是{an}的第20项.

解析

解:令an=n2+n=420,解得n=20.

∴420是{an}的第20项.

1
题型: 单选题
|
单选题

已知数列{an}满足:其中,n∈N+,那么a1l=(  )

A0

Bl

C2

D3

正确答案

B

解析

解:∵a1=64>3,∴=32,,a4=8,a5=4,a6=2;

∵a6=2<3,∴a7=3-2=1<3,a8=3-1=2,…,∴a11=a9=a7=1.

故选B.

1
题型: 单选题
|
单选题

已知数列{an}满足:a1=m,m为正整数,an+1=,若a6=1,则m所有可能的取值为(  )

A{4,5}

B{4,32}

C{4,5,32}

D{5,32}

正确答案

C

解析

解:∵a6=1,

∴a5必为偶数,∴=1,解得a5=2.

当a4为偶数时,,解得a4=4;当a4为奇数时,a5=3a4+1=2,解得a4=-,舍去.

∴a4=4.

当a3为偶数时,,解得a3=8;当a3为奇数时,a4=3a3+1=4,解得a3=1.

当a3=8时,当a2为偶数时,,解得a2=16;当a2为奇数时,a3=3a2+1=8,解得a2=,舍去.

当a3=1时,当a2为偶数时,a3==1,解得a2=2;当a2为奇数时,a3=3a2+1=1,解得a2=0,舍去.

当a2=16时,当a1为偶数时,a2==16,解得a1=32=m;当a1为奇数时,a2=3a1+1=16,解得a1=5=m.

当a2=2时,当a1为偶数时,a2==2,解得a1=4=m;当a1为奇数时,a2=3a1+1=2,解得a1=,舍去.

综上可得m=4,5,32.

故选:C.

1
题型: 单选题
|
单选题

2是数列,2,…的第(  )项.

A7

B8

C9

D10

正确答案

A

解析

解:由数列,2,…,即数列,….

可知:被开方数成等差数列,首项为2,公差为3,

因此可得此数列的通项公式an==

令2=,解得n=7.

∴2是数列,2,…的第7项.

故选:A.

1
题型:填空题
|
填空题

已知数列{an}满足a1+2a2+3a3+…nan=n(n+1)(n+2),则数列{an}的通项公式an=______

正确答案

3n+3

解析

解:∵a1+2a2+3a3+…+nan=n(n+1)(n+2),①

∴n≥2时,a1+2a2+3a3+…+(n-1)an-1=(n-1)n(n+1),②

①-②,得nan=3n(n+1),

∴an=3n+3(n≥2)

∵n=1时,a1=1×2×3=6,满足上式

∴an=3n+3

故答案为:an=3n+3

1
题型:填空题
|
填空题

数列{an},a1=1,an=2n+an-1(n≥2),an=______

正确答案

2n+1-3

解析

解:∵数列{an}中,a1=1,an=2n+an-1(n≥2),

∴an-an-1=2n

∴an-1-an-2=2n-1

a2-a1=22

∴an-a1=22+…+2n-1+2n

∴an=1+(22+23+…+2n

=1+=2n+1-3.

故答案为:2n+1-3.

1
题型: 单选题
|
单选题

若数列,则是这个数列的第(  )项.

A

B

C

D

正确答案

B

解析

解:∵2,5,8,…是首项为2,公差为3的等差数列,设为{an},则an=3n-1,

  由3n-1=20得:n=7;

  可排除A,C,D.

  故选B.

1
题型: 单选题
|
单选题

在数列a1,a2,…,an,…的每相邻两项中插入3个数,使它们与原数构成一个新数列,则新数列的第69项(  )

A是原数列的第18项

B是原数列的第13项

C是原数列的第19项

D不是原数列中的项

正确答案

A

解析

解:把插入的3个数与它前面数列a1,a2,…,an,…中的数看做一个组

∵69÷4=17余1,∴69是第18组的第一个数,恰好为原数列的第18项

故选A

1
题型: 单选题
|
单选题

已知数列{an}满足若a1=,则a2009的值为(  )

A

B

C

D

正确答案

C

解析

解:∵,∴a2=2a1-1==

∴a3=2a2-1==

∴a4=2a3=

…,

∴an+3=an

∴a2009=a669×3+2=a2=

故选C.

1
题型: 单选题
|
单选题

数列0,,…的通项公式为(  )

Aan=

Ban=

Can=

Dan=

正确答案

C

解析

解:数列0,,…即,…,

因此其通项公式为

故选:C.

1
题型:填空题
|
填空题

数列{an}中,a1=2,an=+1(n≥2),则a3=______

正确答案

解析

解:∵a1=2,an=+1(n≥2),

∴a2=,∴a3=+1=

故答案为:

1
题型:填空题
|
填空题

已知数列{an}满足:a1为正整数,an+1=,如果a1=1,则a1+a2+…+a2004=______

正确答案

4676

解析

解:由an+1=,a1=1,可得a2=3a1+1=4,=2,a4==1.

∴可得an+3=an

∴a1+a2+…+a2004=668(a1+a2+a3)=668×7=4676.

故答案为:4676.

1
题型: 单选题
|
单选题

数列1,0,1,0,1,…的一个通项公式是(  )

A

B

C

D

正确答案

B

解析

解:A选项不正确,数列首项不是1;

B选项正确,验证知恰好能表示这个数列;

C选项不正确,其对应的首项是-1;

D选项不正确,其对应的首项为0,不合题意.

故选B

下一知识点 : 不等式
百度题库 > 高考 > 数学 > 数列

扫码查看完整答案与解析

  • 上一题
  • 1/15
  • 下一题