热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 15 分

已知可行域的外接圆C与x轴交于点A1、A2,椭圆C1以线段A1A2为长轴,离心率

(1)求圆C及椭圆C1的方程;

(2)设椭圆C1的右焦点为F,点P为圆C上异于A1、A2的动点,过原点O作直线PF的垂线交直线于点Q,判断直线PQ与圆C的位置关系,并给出证明。

正确答案

见解析

解析

(1)由题意可知,可行域是以及点为顶点的三角形,

,∴为直角三角形,

∴外接圆C以原点O为圆心,线段A1A2为直径,故其方程为

∵2a=4,∴a=2,又,∴,可得

∴所求椭圆C1的方程是

(2)直线PQ与圆C相切,设,则

时,,∴

时,

∴直线OQ的方程为,因此,点Q的坐标为

∴当时,

时候,,∴

综上,当时候,,故直线PQ始终与圆C相切。

知识点

二元一次不等式(组)表示的平面区域圆的标准方程直线与圆的位置关系椭圆的定义及标准方程直线与圆锥曲线的综合问题
1
题型:简答题
|
简答题 · 13 分

已知椭圆过点和点

(1)求椭圆的方程;

(2)设直线与椭圆相交于不同的两点,是否存在实数,使得?若存在,求出实数;若不存在,请说明理由。

正确答案

见解析

解析

(1)因为椭圆过点和点

所以,由,得

所以椭圆的方程为,……………5分

(2)假设存在实数满足题设,

 得

因为直线与椭圆有两个交点,所以,即 。      ①

设MN的中点为分别为点的横坐标,

,从而

所以

因为,所以

,而,所以

,此与 ① 矛盾。

因此,不存在这样的实数,使得,…………………13分

知识点

椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 13 分

已知椭圆的左焦点为,其左、右顶点为,椭圆与轴正半轴的交点为的外接圆的圆心在直线上。

(1)求椭圆的方程;

(2)已知直线是椭圆上的动点,,垂足为,是否存在点,使得为等腰三角形?若存在,求出点的坐标,若不存在,请说明理由。

正确答案

见解析

解析

(1)由题意知,圆心既在的垂直平分线上,也在的垂直平分线上,

的坐标为,则的垂直平分线方程为………①

因为的中点坐标为的斜率为

所以的垂直平分线的方程为…②

联立①②解得:,即

因为在直线上。所以

。因为,所以

再由求得,所以椭圆的方程为

(2)由(1)知:,椭圆上的点横坐标满足

,由题意得

①          若,即

联立,解得,显然不符合条件。

,即

联立,解得:。(显然不符合条件,舍去)

所以满足条件的点的坐标为

③若,即

解得。(显然不符合条件,舍去)

此时所以满足条件的点的坐标为

综上,存在点,使得为等腰三角形。

知识点

椭圆的定义及标准方程
1
题型: 单选题
|
单选题 · 5 分

已知椭圆的长轴在轴上,焦距为,则等于 (    )

A8

B7

C6

D5

正确答案

A

解析

知识点

椭圆的定义及标准方程
1
题型:简答题
|
简答题 · 14 分

已知椭圆的左右顶点分别为,离心率

(1)求椭圆的方程;

(2)若点为曲线:上任一点(点不同于),直线与直线交于点为线段的中点,试判断直线与曲线的位置关系,并证明你的结论。

正确答案

见解析。

解析

(1)由题意可得,   ∴

所以椭圆的方程为

(2)曲线是以为圆心,半径为2的圆。

,点的坐标为

三点共线,     ∴

,则

∴点的坐标为,点的坐标为

∴直线的斜率为

,∴

∴直线的方程为,化简得

∴圆心到直线的距离

所以直线与曲线相切。

知识点

椭圆的定义及标准方程
下一知识点 : 椭圆的几何性质
百度题库 > 高考 > 文科数学 > 椭圆的定义及标准方程

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题