- 椭圆的定义及标准方程
- 共448题
21.已知A是椭圆E:的左顶点,斜率为
的直线交E与A,M两点,点N在E上,
.
(I)当时,求
的面积
(II) 当2时,证明:
.
正确答案
知识点
20.已知椭圆C的中心在坐标原点O,左焦点为F(-l,0),离心率为
(1)求椭圆C的标准方程;
(2)过点F的直线,与椭圆C交于A、B两点,设(其中1<入<3),求
的取值范围,
正确答案
(1);(2)
.
解析
试题分析:本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意对参数的讨论.
(1);
(2)由(其中1<入<3)知,直线l不水平,设l:x=my-1,A(x1,y1),B(x2,y2)
联立:消x得:(2+m2)y2-2my-1=0,得
①
由(其中1<入<3)得y1= -λy2……② 则
,
令t=,则0<t<
,得
……③。
=x1x2+y1y2=(my1-1)(my2-1)+y1y2=(1+m2)y1y2-m(y1+y2)+1=
,
将③代入,得=
,从而
∈
。
考查方向
本题考查了椭圆的标准方程和直线与椭圆的位置关系、平面向量等知识点.
解题思路
本题考查圆锥曲线与直线的位置关系,解题步骤如下:
(1)利用e和c求a,b。
(2)联立直线与椭圆方程求解。
易错点
(1)第二问中的易丢对a的分类讨论。
知识点
20.已知椭圆C:,其右焦点
,离心率为
.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知直线与椭圆C交于不同的两点
,且线段
的中点不在圆
内,求
的取值范围.
正确答案
见解析
解析
试题分析:本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意对参数的讨论.
试题解析:(Ⅰ)由题可知,又
,故
所以椭圆的标准方程为
(Ⅱ)联立方程消去
整理得:
则,解得
,
设,则
,
即的中点为
又的中点不在圆
内,所以
,解得
或
综上可知,或
考查方向
本题考查了直线与圆锥曲线的位置关系及综合应用,属于高考中的高频考点.
解题思路
本题考查圆锥曲线与直线的位置关系,解题步骤如下:
(1)利用e及对称性求a,b。
(2)联立直线与椭圆方程求解。
易错点
第二问中表示直线斜率时容易出错。
知识点
18. 平面直角坐标系中,已知椭圆
的离心率为
,左、右焦点分别是
,以
为圆心以3为半径的圆与以
为圆心以1为半径的圆相交,且交点在椭圆
上.
(1)求椭圆的方程;
(2)过椭圆上一动点
的直线
,过F2与x轴垂直的直线记为
,右准线记为
;
①设直线与直线
相交于点M,直线
与直线
相交于点N,证明
恒为定值,并求此定值。
②若连接并延长与直线
相交于点Q,椭圆
的右顶点A,设直线PA的斜率为
,直线QA的斜率为
,求
的取值范围.
正确答案
见解析
解析
(1)由题意知 ,则
,又
可得
,
所以椭圆C的标准方程为.
(2)①M N
②点(
),点Q
,
∵,
,
∴=
=
.
∵点P在椭圆C上, ∴,
∴=
=
.
∵,
∴.
∴的取值范围是
.
考查方向
解题思路
本题考查导数的性质,解题步骤如下:
(1)根据离心率和几何特点,求出椭圆方程
(2)表示M,N进而得
(3)表示,进而得
的取值范围.
易错点
点M,N表示不当
知识点
正确答案
知识点
扫码查看完整答案与解析