- 抛物线的定义及应用
- 共187题
5.抛物线




正确答案
2
解析
因为抛物线上动点到焦点的距离为动点到准线的距离,因此抛物线上动点到焦点的最短距离为顶点到准线的距离,即
考查方向
解题思路
标准方程中的参数p的几何意义是指焦点到准线的距离;p>0恰恰说明定义中的焦点F不在准线
易错点
焦点与准线的关系
知识点
在直角坐标系



25.当k=0时,分别求C在点M和N处的切线方程;
26.y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.
正确答案
(Ⅰ)
解析
(Ⅰ)由题设可得



∵














故所求切线方程为

考查方向
解题思路
(Ⅰ)先求出M,N的坐标,再利用导数求出M,N.
易错点
本题在用导数求方程过程中易错
正确答案
(Ⅱ)存在
解析
(Ⅱ)存在符合题意的点,证明如下:
设P(0,b)为复合题意得点,


将

∴
∴


当

故∠OPM=∠OPN,所以
考查方向
解题思路
(Ⅱ)先作出判定,再利用设而不求思想即将



易错点
本题在用导数求方程过程中易错,在直线和曲线的位置关系中易错。
16.设抛物线C:y2=4x的焦点为F,过F的直线l与抛物线交于A,B两点,M为抛物线C的准线与x轴的交点,若tan ∠AMB=2
正确答案
8
解析
根据题意可设直线AB的方程为y=k(x-1),设


与


考查方向
解题思路
直线方程与抛物线方程联立,建立新方程分类讨论
易错点
不会运用转化思想;圆锥曲线的定义性质理解不透彻
知识点
如图(7),已知抛物线C:
23.当直线l的倾斜角是45°时,AB的中垂线交y轴于点Q(0,5),求p的值;
24.以AB为直径的圆交x轴于M,N两点,记劣弧

正确答案
(1)
解析
解:(1)



设







考查方向
解题思路
(1)首先设出直线AB方程,再计算出中点从而确定其中垂线方程,最后将Q点坐标代入方程算出P的值(2)根据题意设出直线L的方程,表示出弦AB和圆心D的坐标;令


易错点
对条件
正确答案
(2)
解析
解:
(2)设




令


当


故

考查方向
解题思路
(1)首先设出直线AB方程,再计算出中点从而确定其中垂线方程,最后将Q点坐标代入方程算出P的值(2)根据题意设出直线L的方程,表示出弦AB和圆心D的坐标;令


易错点
对条件
10.在平面直角坐标系xOy中,抛物线y2=2px(p>0) 的焦点为F,双曲线
正确答案
y=±2x
解析
抛物线y2=2px(p>0)的焦点为F
双曲线

代入抛物线的方程,可得A
由A,B,F三点共线,可得:
考查方向
解题思路
求得抛物线的焦点,双曲线的渐近线方程,代入抛物线的方程可得A,B,再由A,B,
F共线,可得
易错点
混淆抛物线和双曲线的几何性质,同时计算容易出现错误
知识点
扫码查看完整答案与解析



















