- 导数的几何意义
- 共149题
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
已知函数f(x)=其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.
(1)指出函数f(x)的单调区间;
(2)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值;
(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围。
正确答案
见解析
解析
(1)函数f(x)的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞)。
(2)由导数的几何意义可知,点A处的切线斜率为f′(x1),点B处的切线斜率为f′(x2),
故当点A处的切线与点B处的切线垂直时,有f′(x1)f′(x2)=-1.
当x<0时,对函数f(x)求导,得f′(x)=2x+2.
因为x1<x2<0,
所以,(2x1+2)(2x2+2)=-1.
所以2x1+2<0,2x2+2>0.
因此x2-x1=[-(2x1+2)+2x2+2]≥=1,当且仅当-(2x1+2)=2x2+2=1,即且时等号成立。
所以,函数f(x)的图象在点A,B处的切线互相垂直时,x2-x1的最小值为1.
(3)当x1<x2<0或x2>x1>0时,f′(x1)≠f′(x2),故x1<0<x2.
当x1<0时,函数f(x)的图象在点(x1,f(x1))处的切线方程为y-(x12+2x1+a)=(2x1+2)(x-x1),即y=(2x1+2)x-x12+a.
当x2>0时,函数f(x)的图象在点(x2,f(x2))处的切线方程为y-ln x2=(x-x2),即y=·x+ln x2-1.
两切线重合的充要条件是
由①及x1<0<x2知,-1<x1<0.
由①②得,a=x12+-1=x12-ln(2x1+2)-1.
设h(x1)=x12-ln(2x1+2)-1(-1<x1<0),
则h′(x1)=2x1-<0.
所以,h(x1)(-1<x1<0)是减函数。
则h(x1)>h(0)=-ln 2-1,
所以a>-ln 2-1.
又当x1∈(-1,0)且趋近于-1时,h(x1)无限增大,
所以a的取值范围是(-ln 2-1,+∞)。
故当函数f(x)的图象在点A,B处的切线重合时,a的取值范围是(-ln 2-1,+∞)。
知识点
曲线在点处的切线方程为__________。
正确答案
解析
求导得,,由直线的点斜式方程得,整理得.
知识点
已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足.
(1)求曲线C的方程;
(2)动点Q(x0,y0)(-2<x0<2)在曲线C上,曲线C在点Q处的切线为l,问:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值;若不存在,说明理由。
正确答案
见解析
解析
(1)由=(-2-x,1-y),=(2-x,1-y),
得,
=(x,y)·(0,2)=2y,
由已知得,
化简得曲线C的方程:x2=4y.
(2)假设存在点P(0,t)(t<0)满足条件,
则直线PA的方程是,PB的方程是y=x+t.
曲线C在点Q处的切线l的方程是,它与y轴的交点为F(0,)。
由于-2<x0<2,因此-1<<1.
①当-1<t<0时,,存在x0∈(-2,2),使得,即l与直线PA平行,故当-1<t<0时不符合题意。
②当t≤-1时,,,
所以l与直线PA,PB一定相交。
分别联立方程组和
解得D,E的横坐标分别是,,
则xE-xD=(1-t),
又|FP|=--t,有S△PDE=·|FP|·|xE-xD|=,
又,
于是·
=.
对任意x0∈(-2,2),要使为常数,即只须t满足
解得t=-1.此时,
故存在t=-1,使得△QAB与△PDE的面积之比是常数2.
知识点
已知函数
(1)若曲线与曲线相交,且在交点处有共同的切线,求a的值和该切线方程;
(2)设函数,当存在最小值时,求其最小值的解析式;
(3)对(2)中的和任意的,证明:
正确答案
见解析。
解析
(1),
由已知得 解得,
∴ 两条直线交点的坐标为,切线的斜率为,
∴ 切线的方程为
(2)由条件知
∴
(ⅰ)当a>0时,令,解得,
∴ 当时,在上递减;
当时,在上递增
∴是在上的唯一极值点,从而也是的最小值点
∴最小值
(ⅱ)当时,在上递增,无最小值,
故的最小值的解析式为
(3)由(2)知
对任意的
①
②
③
故由①②③得
知识点
设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( )
正确答案
解析
知识点
设,集合,.
(1)求集合(用区间表示);
(2) 求函数在内的极值点。
正确答案
(1)
(2) 当时,极值点为;当时,极值点为;当时,无极值点。
解析
(1)由方程得判别式
因为,所以
当时,,此时,所以;
当时,,此时,所以;
当时,,设方程的两根为且,
则 ,,
当时,,,所以
此时,
当时,,所以
此时,.
综上,
(2) ,
所以函数在区间上为减函数,在区间和上为增函数
当时,因为,所以在内的极值点为;
当时,,所以在内有极大值点;
当时,
由,很容易得到
(可以用作差法,也可以用分析法),所以在内有极大值点;
当时,
由,很容易得到,此时在,内没有极值点。
综上,当时,极值点为;当时,极值点为;当时,无极值点。
知识点
设的导数满足其中常数.
(1)求曲线在点处的切线方程。
(2)设求函数的极值。
正确答案
(1)
(2)
解析
(1)因,故,
令,得,由已知,解得
又令,得,由已知,解得
因此,从而
又因为,故曲线在点处的切线方程为,即
(2)由(1)知,,从而有,
令,解得。
当时,,故在为减函数,
当时,,故在为增函数,
当时,,故在为减函数,
从而函数在处取得极小值,在出取得极大值
知识点
设函数。
(1)当a=1时,求的单调区间。
(2)若在上的最大值为,求a的值。
正确答案
见解析。
解析
对函数求导得:,定义域为(0,2)
(1)单调性的处理,通过导数的零点进行穿线判别符号完成。
当a=1时,令
当为增区间;当为减函数。
(2)区间上的最值问题,通过导数得到单调性,结合极值点和端点的比较得到,确定
待定量a的值。
当有最大值,则必不为减函数,且>0,为单调递增区间。
最大值在右端点取到。。
知识点
扫码查看完整答案与解析