热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

已知函数.(其中为自然对数的底数,)

26.若曲线过点,,求曲线在点处的切线方程。

27.若的两个零点为,求的值域。

28.若恒成立,试比较的大小,并说明理由。

第(1)小题正确答案及相关解析

正确答案

(1)

解析

(1)当时,

,∴所求切线方程,即

考查方向

本题主要考查利用导数研究曲线上某点切线方程,导数在最大值,最小值中的应用。

解题思路

1)第一问由可得,求出的导数,求的切线的斜率,由点斜式方程可得切线方程;

2)第二问由零点的概念,化简函数,令得到所求值域。

3)由,即有,令,求出导数,求的单调区间,可得大小。

易错点

求导函数,求极值,参数m的讨论是本题的易错点,

第(2)小题正确答案及相关解析

正确答案

(2)

解析

(2)由题意,

上单调递减

的值域为

考查方向

本题主要考查利用导数研究曲线上某点切线方程,导数在最大值,最小值中的应用。

解题思路

1)第一问由可得,求出的导数,求的切线的斜率,由点斜式方程可得切线方程;

2)第二问由零点的概念,化简函数,令得到所求值域。

3)由,即有,令,求出导数,求的单调区间,可得大小。

易错点

求导函数,求极值,参数m的讨论是本题的易错点,

第(3)小题正确答案及相关解析

正确答案

(3)综上,当时,;当时,;当时,

解析

(3)由,即有

,则,令

上单调递增,在上单调递减。

,∴

又令,则

,又

上单调递增,在上单调递减

∴当时,,即

同理,当时,,当时,

综上,当时,

时,

时,

考查方向

本题主要考查利用导数研究曲线上某点切线方程,导数在最大值,最小值中的应用。

解题思路

1)第一问由可得,求出的导数,求的切线的斜率,由点斜式方程可得切线方程;

2)第二问由零点的概念,化简函数,令得到所求值域。

3)由,即有,令,求出导数,求的单调区间,可得大小。

易错点

求导函数,求极值,参数m的讨论是本题的易错点,

1
题型:简答题
|
简答题 · 12 分

函数,若曲线在点处的切线与直线垂直(其中为自然对数的底数).

25.若上存在极值,求实数的取值范围;

26.求证:当时,.

第(1)小题正确答案及相关解析

正确答案

解析

因为,由已知,所以,得.所以,当时,为增函数,当时,为减函数.所以是函数的极大值点,又上存在极值,所以

,故实数的取值范围是.

考查方向

本题主要考查利用导数的几何意义,用导数求极值,证明不等式

解题思路

第一问由切线与直线垂直得到切线斜率,再用导数的几何意义求出,通过对讨论,得到它存在极值的范围,找到的取值范围;

第(2)小题正确答案及相关解析

正确答案

略;

解析

等价于.

,则

再令,则

因为,所以,所以上是增函数,

所以,所以,所以上是增函数,

所以时,,故.

因为,所以,所以,所以上是减函数.

所以时,

所以,即.

考查方向

本题主要考查利用导数的几何意义,用导数求极值,证明不等式

解题思路

第二问现将不等式等级变形,构造新函数,对新函数用导函数求最值

1
题型: 单选题
|
单选题 · 5 分

12.已知函数,当时,函数上均为增函数,则的取值范围是(     )

A

B

C

D

正确答案

A

解析

,方程的判别式

(1)当时,恒成立,所以恒成立,符合题意,此时

(2)当时,有两个不相等的实数根,由函数上均为增函数可知,的两个根一个小于等于-2,另一个大于等于1,所以画出以a为x轴,b为y轴的坐标系,画出可行域为三角形,,其中表示过点(2,-2)和(a,b)的直线的斜率,由可行域知,当直线经过点(-1,-1)时,最大为,当直线过点(1,1)时, 最小为-3,所以的取值范围是,故选A选项。

考查方向

本题主要考查导数与函数的关系、函数与方程的关系、线性规划等知识,意在考查考生的转化与化归的能力和综合解决问题的能力。

解题思路

1.先求导后判断导数的正负,2.当导数有正有负时转化为一元二次方程根的分布处理,接着转化为线性规划使得问题得以解决。

易错点

1.不知道题中的条件:函数上均为增函数如何处理2.不知道表示什么。

知识点

函数的单调性及单调区间导数的几何意义导数的运算
1
题型: 单选题
|
单选题 · 5 分

12.已知为正实数,直线与曲线相切,则的取值范围(   )

A

B

C

D

正确答案

A

解析

,解得,所以切点的横坐标为,带入切线方程得到切点坐标为,代入曲线方程得,所以,因为,所以,所以,所以应选A.

考查方向

本题主要考查导函数的几何意义,以及最值问题.

解题思路

1.根据导数的几何意义求出的关系;2.将代换,求最值。

易错点

本题易在根据导函数的几何意义得到的关系上出现错误,求最值时找不到方法。

知识点

导数的几何意义直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

10.已知,函数设函数的最大值为,最小值为,则 (     ).

A

B

C

D

正确答案

A

解析

为奇函数,所以

所以

考查方向

本题主要考查函数的奇偶性、对数的运算性质等知识,意在考查考生的运算求解能力和转化能力。

解题思路

1.先将函数化简为两个奇函数和一个常数函数的和的形式;2.利用奇函数在对称的区间上单调性相同得到后即可得到

易错点

1.不知道将函数转化为若干奇函数的和的形式,导致无法处理题中给出的函数;2.不知道是奇函数,导致找不到解决问题的突破点。

知识点

函数单调性的判断与证明函数性质的综合应用导数的几何意义
下一知识点 : 导数的运算
百度题库 > 高考 > 理科数学 > 导数的几何意义

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题