- 导数的几何意义
- 共149题
已知函数(其中
为常数且
)在
处取得极值.
24.当时,求
的极大值点和极小值点;
25.若在
上的最大值为1,求
的值.
正确答案
略
正确答案
略
(本小题满分14分)
设函数f(x)=ax2-a-lnx,其中aR.
(I)讨论f(x)的单调性;
(II)确定a的所有可能取值,使得f(x) >-e1-x+在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).
正确答案
知识点
已知函数,(
为常数).
25.当时,求函数
的单调区间;
26.若对任意
恒成立,求实数
的取值范围;
27.若,
,求证:
.
正确答案
当时,
,
,得
.
由,解得
,即
在
上单调递增;
由,解得
,即
在
上单调递减.
∴综上,的单调递增区间为
,单调递减区间为
解析
当时,
,
,得
.
由,解得
,即
在
上单调递增;
由,解得
,即
在
上单调递减.
∴综上,的单调递增区间为
,单调递减区间为
考查方向
本题主要考查了导数的应用——利用导数求函数的单调区间问题,属于常规性问题。
解题思路
首先将代入解析式中,然后求出导函数,解不等式
和
即可求得单调区间。
易错点
本题容易因含有对数的超越不等式不会解而导致结果算不出来。
教师点评
本题属于常规性问题,在每一年的高考中都会考到,需要考生加强这一类问题的训练。
正确答案
已知,于是
变形为
,
从而,即
,整理得
.
令,则
,即
在
上是减函数,
∴,令
,则
,
当时,
,即此时
单调递增;当
时,
,即此时
单调递减,
而,∴
,∴
解析
已知,于是
变形为
,
从而,即
,整理得
.
令,则
,即
在
上是减函数,
∴,令
,则
,
当时,
,即此时
单调递增;当
时,
,即此时
单调递减,
而,∴
,∴
考查方向
本题主要考查了导数的应用,通过求最值来解决不等式恒成立的问题。
解题思路
首先将问题转化为求函数的最值的问题,然后在利用导数予以解决。
易错点
本题在对恒成立问题的分析中容易产生错误的理解而导致出错。
正确答案
由(1)知,当时,
在
上是增函数,
∵,∴
,
即,同理
,
,
又因为,当且仅当
时,取等号,
,
,
,
∴,∴
,∴
.
解析
由(1)知,当时,
在
上是增函数,
∵,∴
,
即,同理
,
,
又因为,当且仅当
时,取等号,
,
,
,
∴,∴
,∴
.
考查方向
本题考查了导数的应用以及不等式的证明。
解题思路
首先根据函数的单调性予以放缩,再利用放缩法予以证明。
易错点
本题容易因为放缩法掌握不清楚而导致出现错误。
教师点评
本题属于不等式的证明问题,难度较大,考生需要有足够的知识储备和应变能力。
根据《中华人民共和国广告法》,不得发布广告的药品为
A.人血白蛋白
B.氨茶碱
C.可待图片
D.狂犬疫苗
E.龙胆泻肝九
正确答案
C
解析
禁止发布广告的药品包括:麻醉药品、精神药品、医疗用毒性药品、放射性药品。可待因片属于麻醉药品,故选C。
17.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到
的距离分别为5千米和40千米,点N到
的距离分别为20千米和2.5千米,以
所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数
(其中a,b为常数)模型.
(1)求a,b的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式,并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.
正确答案
(1)由题意知,点,
的坐标分别为
,
.
将其分别代入,得
,
解得.
(2)①由(1)知,(
),则点
的坐标为
,
设在点处的切线
交
,
轴分别于
,
点,
,
则的方程为
,由此得
,
.
故,
.
②设,则
.令
,解得
.
当时,
,
是减函数;
当时,
,
是增函数.
从而,当时,函数
有极小值,也是最小值,所以
,
此时.
答:当时,公路
的长度最短,最短长度为
千米.
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析