- 导数与积分
- 共3028题
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。
正确答案
测试
设L为曲线C:在点(1,0)处的切线。
(1)求L的方程;
(2)证明:除切点(1,0)之外,曲线C在直线L的下方。
正确答案
见解析
解析
(1)设,则
.
所以f′(1)=1.
所以L的方程为y=x-1.
(2)令g(x)=x-1-f(x),则除切点之外,曲线C在直线L的下方等价于g(x)>0(x>0,x≠1)。
g(x)满足g(1)=0,且g′(x)=1-f′(x)=.
当0<x<1时,x2-1<0,ln x<0,所以g′(x)<0,故g(x)单调递减;
当x>1时,x2-1>0,ln x>0,所以g′(x)>0,故g(x)单调递增。
所以,g(x)>g(1)=0(x>0,x≠1)。
所以除切点之外,曲线C在直线L的下方。
知识点
设a+b=2,b>0,则当a=__________时,取得最小值。
正确答案
-2
解析
因为a+b=2,所以
1==
≥,
当a>0时,,
;
当a<0时,,
,当且仅当b=2|a|时等号成立。
因为b>0,所以原式取最小值时b=-2a.
又a+b=2,所以a=-2时,原式取得最小值。
知识点
已知函数 ,且
( )
正确答案
解析
由得
解得
,所以
,由
得
,即
,故选C
知识点
函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=____▲_____
正确答案
21
解析
考查函数的切线方程、数列的通项。
在点(ak,ak2)处的切线方程为:当
时,解得
,
所以。
知识点
设函数fn(x)=(x∈R,n∈N*),证明:
(1)对每个n∈N*,存在唯一的xn∈,满足fn(xn)=0;
(2)对任意p∈N*,由(1)中xn构成的数列{xn}满足0<xn-xn+p<.
正确答案
见解析
解析
(1)对每个n∈N*,当x>0时,f′n(x)=>0,故fn(x)在(0,+∞)内单调递增。
由于f1(1)=0,当n≥2时,fn(1)=>0,故fn(1)≥0.
又·
,
所以存在唯一的xn∈,满足fn(xn)=0.
(2)当x>0时,fn+1(x)=fn(x)+>fn(x),故fn+1(xn)>fn(xn)=fn+1(xn+1)=0.
由fn+1(x)在(0,+∞)内单调递增知,xn+1<xn,故{xn}为单调递减数列,
从而对任意n,p∈N*,xn+p<xn.
对任意p∈N*,
由于fn(xn)=,①
fn+p(xn+p)=.②
①式减去②式并移项,利用0<xn+p<xn≤1,
得xn-xn+p=
.
因此,对任意p∈N*,都有0<xn-xn+p<.
知识点
设是定义在区间
上的函数,其导函数为
。如果存在实数
和函数
,其中
对任意的
都有
>0,使得
,则称函数
具有性质
。
(1)设函数,其中
为实数。
(i)求证:函数具有性质
; (ii)求函数
的单调区间。
(2)已知函数具有性质
。给定
设
为实数,
,
,且
,
若||<|
|,求
的取值范围。
正确答案
见解析。
解析
(1)(i)
∵时,
恒成立,
∴函数具有性质
;
(ii)(方法一)设,
与
的符号相同。
当时,
,
,故此时
在区间
上递增;
当时,对于
,有
,所以此时
在区间
上递增;
当时,
图像开口向上,对称轴
,而
,
对于,总有
,
,故此时
在区间
上递增;
(方法二)当时,对于
,
所以,故此时
在区间
上递增;
当时,
图像开口向上,对称轴
,方程
的两根为:
,而
当时,
,
,故此时
在区间
上递减;同理得:
在区间
上递增。
综上所述,当时,
在区间
上递增;
当时,
在
上递减;
在
上递增。
(2)(方法一)由题意,得:
又对任意的
都有
>0,
所以对任意的都有
,
在
上递增。
又。
当时,
,且
,
综合以上讨论,得:所求的取值范围是(0,1)。
(方法二)由题设知,的导函数
,其中函数
对于任意的
都成立。所以,当
时,
,从而
在区间
上单调递增。
①当时,有
,
,得
,同理可得
,所以由
的单调性知
、
,
从而有||<|
|,符合题设。
②当时,
,
,于是由
及
的单调性知
,所以|
|≥|
|,与题设不符。
③当时,同理可得
,进而得|
|≥|
|,与题设不符。
因此综合①、②、③得所求的的取值范围是(0,1)。
知识点
已知函数f(x)=x2ln x.
(1)求函数f(x)的单调区间;
(2)证明:对任意的t>0,存在唯一的s,使t=f(s);
(3)设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有.
正确答案
见解析
解析
(1)函数f(x)的定义域为(0,+∞)。
f′(x)=2xln x+x=x(2ln x+1),令f′(x)=0,得.
当x变化时,f′(x),f(x)的变化情况如下表:
所以函数f(x)的单调递减区间是,单调递增区间是
.
(2)证明:当0<x≤1时,f(x)≤0.
设t>0,令h(x)=f(x)-t,x∈[1,+∞)。
由(1)知,h(x)在区间(1,+∞)内单调递增。
h(1)=-t<0,h(et)=e2tln et-t=t(e2t-1)>0.
故存在唯一的s∈(1,+∞),使得t=f(s)成立。
(3)证明:因为s=g(t),由(2)知,t=f(s),且s>1,从而
,
其中u=ln s.
要使成立,只需
.
当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾。
所以s>e,即u>1,从而ln u>0成立。
另一方面,令F(u)=,u>1.F′(u)=
,令F′(u)=0,得u=2.
当1<u<2时,F′(u)>0;当u>2时,F′(u)<0.
故对u>1,F(u)≤F(2)<0.
因此成立。
综上,当t>e2时,有.
知识点
已知函数,其中
.
(1)若对一切,
恒成立,求
的取值集合.
(2)在函数的图像上取定两点
,记直线
的斜率为
.问:是否存在
,使
成立?若存在,求
的取值范围;若不存在,请说明理由.
正确答案
见解析
解析
(1)若,则对一切
,
,这与题设矛盾,又
,
故.
而令
当时,
单调递减;当
时,
单调递增,故当
时,
取最小值
于是对一切恒成立,当且仅当
.①
令则
当时,
单调递增;当
时,
单调递减.
故当时,
取最大值
.因此,当且仅当
即
时,①式成立.
综上所述,的取值集合为
.
(2)由题意知,
令则
令,则
.
当时,
单调递减;当
时,
单调递增.
故当,
即
从而,
又
所以
因为函数在区间
上的图像是连续不断的一条曲线,所以存在
,使
,
单调递增,故这样的
是唯一的,且
.故当且仅当
时,
.
综上所述,存在使
成立.且
的取值范围为
.
知识点
扫码查看完整答案与解析