热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 13 分

已知函数

23.求函数的单调区间;

24.当时,都有成立,求的取值范围;

25.试问过点可作多少条直线与曲线相切?并说明理由.

第(1)小题正确答案及相关解析

正确答案

(1)当时,函数的单调递增区间为.当时,函数的单调递减区间为,单调递增区间为

解析

试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)利用导函数对分类求出单调区间;(2)要灵活运用“恒成立问题”解决的方法研究问题。(3)根据题意设出切点,再利用切点在曲线上构造方程去研究方程根的个数即切线条数。

(Ⅰ)函数的定义域为

(1)当时,恒成立,函数上单调递增;

考查方向

本题考查了利用导数研究 “过点问题”的切线方程求法,考查了导数综合运用中的“恒成立问题”,还考查了分类讨论、数形结合等数学思想方法的灵活应用,意在训练考生的运算能力,分析问题和解决问题的能力,较难。

解题思路

本题考查导数的性质及其应用,解题步骤如下:

求出原函数的导函数,对分类求出的单调区间。第二问利用第一问的结论对分类求出上的最小值,再根据恒成立问题完成结论。第三问属于“过点问题”,设切点为,再利用切点的特点得到,再把求切线方程条数问题转化为求方程的根的问题,最终构造函数模型完成即可。

易错点

第一问在对分类讨论求单调区间时由于比较繁琐而易出现错误。

第三问在利用导数研究 “过点问题”的切线方程求法上易出错。

第(2)小题正确答案及相关解析

正确答案

时,函数在区间上恒大于零;(3)当时,过点P存在两条切线;当时,不存在过点P的切线。

解析

试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)利用导函数对分类求出单调区间;(2)要灵活运用“恒成立问题”解决的方法研究问题。(3)根据题意设出切点,再利用切点在曲线上构造方程去研究方程根的个数即切线条数。

(Ⅱ)由(Ⅰ)可知,

(1)当时,即时,函数在区间上为增函数,

所以在区间上,,显然函数在区间上恒大于零;

(2)当时,即时,函数上为减函数,在

上为增函数,所以

依题意有,解得,所以

(3)当时,即时,在区间上为减函数,

所以

依题意有,解得,所以

综上所述,当时,函数在区间上恒大于零.………………8分

考查方向

本题考查了利用导数研究 “过点问题”的切线方程求法,考查了导数综合运用中的“恒成立问题”,还考查了分类讨论、数形结合等数学思想方法的灵活应用,意在训练考生的运算能力,分析问题和解决问题的能力,较难。

解题思路

本题考查导数的性质及其应用,解题步骤如下:

求出原函数的导函数,对分类求出的单调区间。第二问利用第一问的结论对分类求出上的最小值,再根据恒成立问题完成结论。第三问属于“过点问题”,设切点为,再利用切点的特点得到,再把求切线方程条数问题转化为求方程的根的问题,最终构造函数模型完成即可。

易错点

第一问在对分类讨论求单调区间时由于比较繁琐而易出现错误。

第三问在利用导数研究 “过点问题”的切线方程求法上易出错。

第(3)小题正确答案及相关解析

正确答案

时,过点P存在两条切线;当时,不存在过点P的切线。

解析

试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)利用导函数对分类求出单调区间;(2)要灵活运用“恒成立问题”解决的方法研究问题。(3)根据题意设出切点,再利用切点在曲线上构造方程去研究方程根的个数即切线条数。

(Ⅲ)设切点为,则切线斜率

切线方程为

因为切线过点,则,即.……①

 ,则

(1)当时,在区间上,单调递增;

在区间上,单调递减,

所以函数的最大值为

故方程无解,即不存在满足①式.

因此当时,切线的条数为

(2)当时, 在区间上,单调递减,

在区间上,单调递增,

所以函数的最小值为

,则

上存在唯一零点.

,则

,则

时,恒成立.

所以单调递增,恒成立.所以

上存在唯一零点.

因此当时,过点P存在两条切线.

(3)当时,,显然不存在过点P的切线.

综上所述,当时,过点P存在两条切线;

时,不存在过点P的切线.…………………………………………………13分

考查方向

本题考查了利用导数研究 “过点问题”的切线方程求法,考查了导数综合运用中的“恒成立问题”,还考查了分类讨论、数形结合等数学思想方法的灵活应用,意在训练考生的运算能力,分析问题和解决问题的能力,较难。

解题思路

本题考查导数的性质及其应用,解题步骤如下:

求出原函数的导函数,对分类求出的单调区间。第二问利用第一问的结论对分类求出上的最小值,再根据恒成立问题完成结论。第三问属于“过点问题”,设切点为,再利用切点的特点得到,再把求切线方程条数问题转化为求方程的根的问题,最终构造函数模型完成即可。

易错点

第一问在对分类讨论求单调区间时由于比较繁琐而易出现错误。

第三问在利用导数研究 “过点问题”的切线方程求法上易出错。

1
题型:简答题
|
简答题 · 12 分

已知函数,函数 ,其中为大于零的常数.

25.求函数的单调区间;

26.求证:

第(1)小题正确答案及相关解析

正确答案

(Ⅰ)单增,单减

解析

解:(1),----------------------------------------------------------------1分

,则上单调递增;

,则上单调递减。---------------------3分

考查方向

导数的应用求函数的单调性,零点存在性定理的应用.

解题思路

在(Ⅱ)中要构造函数,通过求导研究单调性.

易错点

求单调性注意定义域;导数的运算.

第(2)小题正确答案及相关解析

正确答案

(Ⅱ)略.

解析

.令,---------4分

,故上单调递增。-------------------------6分

,故存在,使得

。---------------------------------------------------------------------------8分

时,,故时,,故

上单调递减,在上单调递增,------------------------------------10分

。--------------------------------------------------------------12分

考查方向

导数的应用求函数的单调性,零点存在性定理的应用.

解题思路

在(Ⅱ)中要构造函数,通过求导研究单调性.

易错点

求单调性注意定义域;导数的运算.

1
题型:简答题
|
简答题 · 12 分

已知函数为常数),函数,(为常数,且).

25.若函数有且只有1个零点,求的取值的集合;

26.当(Ⅰ)中的取最大值时,求证:

第(1)小题正确答案及相关解析

正确答案

解析

(1)解:,----------------------------------------------------------------1分

时,,则上单调递增.

上存在唯一零点,满足题意;           -------------------------3分

时,令,则上单调递增

,则上单调递减;

,得,显然满足题意;            -------------------------------4分

,则,而

,则

,得,故上单调递增;

,得,故上单调递减;

,则,即

上有唯一零点,在上有唯一零点,不符题意.

综上,的取值的集合为.             -----------------------6分

考查方向

本题考查了函数的零点、构造函数法证明不等式及分类讨论的思想。

解题思路

利用导数讨论函数的单调性与极值,并与图像结合。

利用第一问的结论化简左边的函数式,然后讨论函数的单调性和极值,即可得到结果。

易错点

忽视了函数的定义域

第一问中没有对k进行分类讨论

第二问的证明过程中不能正确利用第一问的结论化简函数。

第(2)小题正确答案及相关解析

正确答案

证明略

解析

由(1)知,,当且仅当时取

,故

时,

  -------------8分

,则

,则,故上单调递增.

,故存在,使得

.   -------------10分

时,,故时,,故

上单调递减,在上单调递增,

.    -------------12分

考查方向

本题考查了函数的零点、构造函数法证明不等式及分类讨论的思想。

解题思路

利用导数讨论函数的单调性与极值,并与图像结合。

利用第一问的结论化简左边的函数式,然后讨论函数的单调性和极值,即可得到结果。

易错点

忽视了函数的定义域

第一问中没有对k进行分类讨论

第二问的证明过程中不能正确利用第一问的结论化简函数。

1
题型: 单选题
|
单选题 · 5 分

设函数的导函数,则数列的前n项和是(   )

A

B

C

D

正确答案

A

解析

的导函数为,结合,解出,所以,进而,所以其前项和为,故选A选项。

考查方向

本题主要考查了导数的运算和数列的求和方法,在近几年的各省高考题出现的频率较高,常单独命题或与等差数列给合,考查基本公式、运算和性质。

解题思路

求解出的值,进而求出,再由裂项求和法求出的前项和。

易错点

本题易在数列求和运算上出错。

知识点

导数的运算数列与函数的综合
1
题型: 单选题
|
单选题 · 5 分

4.下列三个数:,大小顺序正确的是(  )

Aa>c>b

Ba>b>c

Ca>c>b

Db>a>c

正确答案

C

知识点

导数的运算
1
题型:简答题
|
多选题

根据破产法律制度的规定,下列各项中,属于破产财产的有( )。

A.宣告破产时破产企业经营管理的全部财产
B.破产企业的对外投资及应得收益
C.破产企业享有的专利权
D.企业破产前,为维持生产经营向职工筹借的款项

正确答案

A,B,C

解析

[解析] 根据《破产法》规定,企业在破产前为维持生产经营,向职工筹借的款项,视为破产企业所欠职工工资处理,借款利息按照借款实际使用时间和银行同期存款利率计算,但职工在企业破产前作为资本金投资的款项,应当作为破产财产。

1
题型:简答题
|
简答题 · 14 分

17.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到的距离分别为5千米和40千米,点N到的距离分别为20千米和2.5千米,以所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数(其中a,b为常数)模型.

(1)求a,b的值;

(2)设公路l与曲线C相切于P点,P的横坐标为t.

①请写出公路l长度的函数解析式,并写出其定义域;

②当t为何值时,公路l的长度最短?求出最短长度.

正确答案

(1)由题意知,点的坐标分别为

将其分别代入,得

解得

(2)①由(1)知,),则点的坐标为

设在点处的切线轴分别于点,

的方程为,由此得

②设,则.令,解得

时,是减函数;

时,是增函数.

从而,当时,函数有极小值,也是最小值,所以

此时

答:当时,公路的长度最短,最短长度为千米.

解析

解析已在路上飞奔,马上就到!

知识点

函数解析式的求解及常用方法导数的几何意义导数的运算
1
题型: 单选题
|
单选题 · 5 分

12.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是(      )

A

B

C

D

正确答案

A

解析

解析已在路上飞奔,马上就到!

知识点

函数单调性的判断与证明导数的运算其它不等式的解法
1
题型:简答题
|
简答题 · 16 分

19.已知函数

(1)试讨论的单调性;

(2)若(实数c是与a无关的常数),当函数有三个不同的零点时,a的取值范围恰好是,求c的值。

正确答案

(1),令,解得

时,因为),所以函数上单调递增;

时,时,时,

所以函数上单调递增,在上单调递减;

时,时,时,

所以函数上单调递增,在上单调递减.

(2)由(1)知,函数的两个极值为,则函数有三个

零点等价于,从而

,所以当时,或当时,

,因为函数有三个零点时,的取值范围恰好是

,则在,且在均恒成立,

从而,且,因此

此时,

因函数有三个零点,则有两个异于的不等实根,

所以,且

解得

综上

解析

解析已在路上飞奔,马上就到!

知识点

导数的几何意义导数的运算
1
题型:简答题
|
简答题 · 12 分

21.(本题满分12分)

设函数.

(Ⅰ)证明:单调递减,在单调递增;

(Ⅱ)若对于任意,都有,求的取值范围.

正确答案

(Ⅰ)详见解析;(Ⅱ).

试题分析:(Ⅰ)先求导函数,根据的范围讨论导函数在的符号即可;

(Ⅱ)恒成立,等价于.由是两个独立的变量,故可求研究的值域,由(Ⅰ)可得最小值为,最大值可能是,故只需,从而得关于的不等式,因不易解出,故利用导数研究其单调性和符号,从而得解.

解析

解析已在路上飞奔,马上就到!

知识点

函数单调性的判断与证明导数的运算不等式恒成立问题
百度题库 > 高考 > 理科数学 > 导数与积分

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题