- 导数与积分
- 共3028题
已知函数.
23.求函数的单调区间;
24.当时,都有
成立,求
的取值范围;
25.试问过点可作多少条直线与曲线
相切?并说明理由.
正确答案
(1)当时,函数
的单调递增区间为
.当
时,函数
的单调递减区间为
,单调递增区间为
;
解析
试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)利用导函数对分类求出单调区间;(2)要灵活运用“恒成立问题”解决的方法研究问题。(3)根据题意设出切点,再利用切点在曲线上构造方程去研究方程根的个数即切线条数。
(Ⅰ)函数的定义域为
.
.
(1)当时,
恒成立,函数
在
上单调递增;
考查方向
解题思路
本题考查导数的性质及其应用,解题步骤如下:
求出原函数的导函数,对分类求出
的单调区间。第二问利用第一问的结论对
分类求出
在
上的最小值,再根据恒成立问题完成结论。第三问属于“过点问题”,设切点为
,再利用切点的特点得到
,再把求切线方程条数问题转化为求方程的根的问题,最终构造函数模型完成即可。
易错点
第一问在对分类讨论求单调区间时由于比较繁琐而易出现错误。
第三问在利用导数研究 “过点问题”的切线方程求法上易出错。
正确答案
时,函数
在区间
上恒大于零;(3)当
时,过点P
存在两条切线;当
时,不存在过点P
的切线。
解析
试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)利用导函数对分类求出单调区间;(2)要灵活运用“恒成立问题”解决的方法研究问题。(3)根据题意设出切点,再利用切点在曲线上构造方程去研究方程根的个数即切线条数。
(Ⅱ)由(Ⅰ)可知,
(1)当时,即
时,函数
在区间
上为增函数,
所以在区间上,
,显然函数
在区间
上恒大于零;
(2)当时,即
时,函数
在
上为减函数,在
上为增函数,所以.
依题意有,解得
,所以
.
(3)当时,即
时,
在区间
上为减函数,
所以.
依题意有,解得
,所以
.
综上所述,当时,函数
在区间
上恒大于零.………………8分
考查方向
解题思路
本题考查导数的性质及其应用,解题步骤如下:
求出原函数的导函数,对分类求出
的单调区间。第二问利用第一问的结论对
分类求出
在
上的最小值,再根据恒成立问题完成结论。第三问属于“过点问题”,设切点为
,再利用切点的特点得到
,再把求切线方程条数问题转化为求方程的根的问题,最终构造函数模型完成即可。
易错点
第一问在对分类讨论求单调区间时由于比较繁琐而易出现错误。
第三问在利用导数研究 “过点问题”的切线方程求法上易出错。
正确答案
当时,过点P
存在两条切线;当
时,不存在过点P
的切线。
解析
试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)利用导函数对分类求出单调区间;(2)要灵活运用“恒成立问题”解决的方法研究问题。(3)根据题意设出切点,再利用切点在曲线上构造方程去研究方程根的个数即切线条数。
(Ⅲ)设切点为,则切线斜率
,
切线方程为.
因为切线过点,则
,即
.……①
令
,则
.
(1)当时,在区间
上,
,
单调递增;
在区间上,
,
单调递减,
所以函数的最大值为
.
故方程无解,即不存在
满足①式.
因此当时,切线的条数为
.
(2)当时, 在区间
上,
,
单调递减,
在区间上,
,
单调递增,
所以函数
的最小值为
.
取,则
.
故在
上存在唯一零点.
取,则
.
设,
,则
.
当时,
恒成立.
所以在
单调递增,
恒成立.所以
.
故在
上存在唯一零点.
因此当时,过点P
存在两条切线.
(3)当时,
,显然不存在过点P
的切线.
综上所述,当时,过点P
存在两条切线;
当时,不存在过点P
的切线.…………………………………………………13分
考查方向
解题思路
本题考查导数的性质及其应用,解题步骤如下:
求出原函数的导函数,对分类求出
的单调区间。第二问利用第一问的结论对
分类求出
在
上的最小值,再根据恒成立问题完成结论。第三问属于“过点问题”,设切点为
,再利用切点的特点得到
,再把求切线方程条数问题转化为求方程的根的问题,最终构造函数模型完成即可。
易错点
第一问在对分类讨论求单调区间时由于比较繁琐而易出现错误。
第三问在利用导数研究 “过点问题”的切线方程求法上易出错。
已知函数,函数
,其中
为大于零的常数.
25.求函数的单调区间;
26.求证:.
正确答案
(Ⅰ)单增,
单减
解析
解:(1),----------------------------------------------------------------1分
令得
,则
在
上单调递增;
令得
,则
在
上单调递减。---------------------3分
考查方向
解题思路
在(Ⅱ)中要构造函数,通过求导研究单调性.
易错点
求单调性注意定义域;导数的运算.
正确答案
(Ⅱ)略.
解析
.令
,---------4分
则,
令,
则,故
在
上单调递增。-------------------------6分
而,
,故存在
,使得
,
即。-------------------------
--------------------------------------------------8分
则时,
,故
;
时,
,故
。
则在
上单调递减,在
上单调递增,------------------------------------10分
故
。
故。--------------------------------------------------------------12分
考查方向
解题思路
在(Ⅱ)中要构造函数,通过求导研究单调性.
易错点
求单调性注意定义域;导数的运算.
已知函数(
为常数),函数
,(
为常数,且
).
25.若函数有且只有1个零点,求
的取值的集合;
26.当(Ⅰ)中的取最大值时,求证:
.
正确答案
解析
(1)解:,----------------------------------------------------------------1分
①时,
,则
在
上单调递增.
而,
,
故在
上存在唯一零点,满足题意; -------------------------3分
②时,令
得
,则
在
上单调递增
;
令得
,则
在
上单调递减;
若,得
,显然满足题意; -------------------------------4分
若,则
,而
,
又,
令,则
,
令,得
,故
在
上单调递增;
令,得
,故
在
上单调递减;
故,则
,即
,
则.
故在
上有唯一零点,在
上有唯一零点,不符题意.
综上,的取值的集合为
. -----------------------6分
考查方向
解题思路
利用导数讨论函数的单调性与极值,并与图像结合。
利用第一问的结论化简左边的函数式,然后讨论函数的单调性和极值,即可得到结果。
易错点
忽视了函数的定义域
第一问中没有对k进行分类讨论
第二问的证明过程中不能正确利用第一问的结论化简函数。
正确答案
证明略
解析
由(1)知,,当且仅当
时取
,
而,故
,
则时,
-------------8分
记,则
,
令,则
,故
在
上单调递增.
而,
,故存在
,使得
,
即. -------------10分
则时,
,故
;
时,
,故
.
则在
上单调递减,在
上单调递增,
故
.
故. -------------12分
考查方向
解题思路
利用导数讨论函数的单调性与极值,并与图像结合。
利用第一问的结论化简左边的函数式,然后讨论函数的单调性和极值,即可得到结果。
易错点
忽视了函数的定义域
第一问中没有对k进行分类讨论
第二问的证明过程中不能正确利用第一问的结论化简函数。
设函数的导函数
,则数列
的前n项和是( )
正确答案
解析
由的导函数为
,结合
,解出
,所以
,进而
,所以其前
项和为
,故选A选项。
考查方向
解题思路
由及
求解出
与
的值,进而求出
,再由裂项求和法求出
的前
项和。
易错点
本题易在数列求和运算上出错。
知识点
4.下列三个数:,大小顺序正确的是( )
正确答案
知识点
根据破产法律制度的规定,下列各项中,属于破产财产的有( )。
A.宣告破产时破产企业经营管理的全部财产
B.破产企业的对外投资及应得收益
C.破产企业享有的专利权
D.企业破产前,为维持生产经营向职工筹借的款项
正确答案
A,B,C
解析
[解析] 根据《破产法》规定,企业在破产前为维持生产经营,向职工筹借的款项,视为破产企业所欠职工工资处理,借款利息按照借款实际使用时间和银行同期存款利率计算,但职工在企业破产前作为资本金投资的款项,应当作为破产财产。
17.某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到
的距离分别为5千米和40千米,点N到
的距离分别为20千米和2.5千米,以
所在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数
(其中a,b为常数)模型.
(1)求a,b的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式,并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.
正确答案
(1)由题意知,点,
的坐标分别为
,
.
将其分别代入,得
,
解得.
(2)①由(1)知,(
),则点
的坐标为
,
设在点处的切线
交
,
轴分别于
,
点,
,
则的方程为
,由此得
,
.
故,
.
②设,则
.令
,解得
.
当时,
,
是减函数;
当时,
,
是增函数.
从而,当时,函数
有极小值,也是最小值,所以
,
此时.
答:当时,公路
的长度最短,最短长度为
千米.
解析
解析已在路上飞奔,马上就到!
知识点
12.设函数是奇函数
的导函数,
,当
时,
,则使得
成立的
的取值范围是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19.已知函数。
(1)试讨论的单调性;
(2)若(实数c是与a无关的常数),当函数
有三个不同的零点时,a的取值范围恰好是
,求c的值。
正确答案
(1),令
,解得
,
.
当时,因为
(
),所以函数
在
上单调递增;
当时,
时,
,
时,
,
所以函数在
,
上单调递增,在
上单调递减;
当时,
时,
,
时,
,
所以函数在
,
上单调递增,在
上单调递减.
(2)由(1)知,函数的两个极值为
,
,则函数
有三个
零点等价于,从而
或
.
又,所以当
时,
或当
时,
.
设,因为函数
有三个零点时,
的取值范围恰好是
,则在
上
,且在
上
均恒成立,
从而,且
,因此
.
此时,,
因函数有三个零点,则有两个异于
的不等实根,
所以,且
,
解得.
综上.
解析
解析已在路上飞奔,马上就到!
知识点
21.(本题满分12分)
设函数.
(Ⅰ)证明:在
单调递减,在
单调递增;
(Ⅱ)若对于任意,都有
,求
的取值范围.
正确答案
(Ⅰ)详见解析;(Ⅱ).
试题分析:(Ⅰ)先求导函数,根据
的范围讨论导函数在
和
的符号即可;
(Ⅱ)恒成立,等价于
.由
是两个独立的变量,故可求研究
的值域,由(Ⅰ)可得最小值为
,最大值可能是
或
,故只需
,从而得关于
的不等式,因不易解出,故利用导数研究其单调性和符号,从而得解.
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析