- 导数与积分
- 共3028题
已知,函数
(1)求曲线在点
处的切线方程;
(2)当时,求
的最大值。
正确答案
(1)(2)
解析
(1)由已知得:,且
,所以所求切线方程为:
,即为:
;
(2)由已知得到:,其中
,当
时,
,
(1)当时,
,所以
在
上递减,所以
,因为
;
(2)当,即
时,
恒成立,所以
在
上递增,所以
,因为
;
(3)当,即
时,
,且
,即
所以,且
所以
,
所以;
由,所以
(ⅰ)当时,
,所以
时,
递增,
时,
递减,所以
,因为
,又因为
,所以
,所以
,所以
(ⅱ)当时,
,所以
,因为
,此时
,当
时,
是大于零还是小于零不确定,所以
1当时,
,所以
,所以此时
;
2当时,
,所以
,所以此时
综上所述:
知识点
已知为R上的可导函数,且
均有
,则有 ( )
正确答案
解析
略。
知识点
抛物线在
处的切线与
轴及该抛物线所围成的图形面积为 .
正确答案
解析
:函数的导数为
,即切线斜率为
,所以切线方程为
,即
,令
,得
,作图可知,围成的图形是曲边梯形去掉一个直角三角形,
所求面积为.
知识点
已知a是给定的实常数,
设函数是
的一个极大值点.
(1)求b的取值范围;
(2)设是
的3个极值点,问是否存在实数b,可找到
,使得
的某种排列
(其中
)依次成等差数列?若存在,示所有的b及相应的
若不存在,说明理由.
正确答案
见解析
解析
(1)解:
令
则
于是可设是
的两实根,且
1)当时,则
不是
的极值点,此时不合题意
2)当时,由于
是
的极大值点,
故 即
即
所以
所以的取值范围是(-∞,
)
(2)解:由(Ⅰ)可知,假设存了及
满足题意,则
1)当时,则
于是
即
此时
或
2)当时,则
①若
于是
即
于是
此时
②若
于是
即
于是
此时
综上所述,存在满足题意
当
当
当
知识点
已知函数
(1)求函数的单调区间;
(2)如果关于x的方程有实数根,求实数
的取值集合;
(3)是否存在正数,使得关于x的方程
有两个不相等的实数根?如果存在,求
满足的条件;如果不存在,说明理由.
正确答案
见解析。
解析
(1)函数的定义域是
对求导得
由 ,由
因此 是函数
的增区间;
(-1,0)和(0,3)是函数的减区间
(2)因为
所以实数m的取值范围就是函数的值域
对
令
∴当x=2时取得最大值,且
又当x无限趋近于0时,无限趋近于
无限趋近于0,
进而有无限趋近于-∞.因此函数
的值域是
,即实数m的取值范围是
(3)结论:这样的正数k不存在。
下面采用反证法来证明:假设存在正数k,使得关于x的方程
有两个不相等的实数根
,则
根据对数函数定义域知都是正数。
又由(1)可知,当时,
∴=
,
=
,
再由k>0,可得
由于 不妨设
,
由①和②可得
利用比例性质得
即
由于上的恒正增函数,且
又上的恒正减函数,且
∴
∴,这与(*)式矛盾。
因此满足条件的正数k不存在
知识点
已知函数。
(1)求在
上的最大值;
(2)若直线为曲线
的切线,求实数
的值;
(3)当时,设
,且
,若不等式
恒成立,求实数
的最小值。
正确答案
见解析。
解析
(1),
令,解得
(负值舍去),
由,解得
。
(ⅰ)当时,由
,得
,
在
上的最大值为
。
(ⅱ)当时,由
,得
,
在
上的最大值为
。
(ⅲ)当时,
在
时,
,在
时,
,
在
上的最大值为
。
(2)设切点为,则
…
由,有
,化简得
,
即或
, ……………①
由,有
,………②
由①、②解得或
。 …
(3)当时,
,
由(2)的结论直线为曲线
的切线,
,
点
在直线
上,
根据图像分析,曲线在直线
下方。
下面给出证明:当时,
。
,
当
时,
,即
。
,
,
。
要使不等式
恒成立,必须
。
又当
时,满足条件
,
且,
因此,的最小值为
。
知识点
已知为自然对数的底数,设函数
,则
正确答案
解析
当时,
,且
,所以当
时,
,函数递增;当
时,
,函数递减;所以当
时函数取得极小值;所以选C
知识点
直线过点
,且与曲线
在点
处的切线相互垂直,,则直线
的方程为 ;
正确答案
解析
略。
知识点
已知函数。
(1)若a=-1,求函数的单调区间;
(2)若函数的图象在点(2,f(2))处的切线的倾斜角为45o,对于任意的t
[1,2],函数
是
的导函数)在区间(t,3)上总不是单调函数,求m的取值范围;
(3)求证:。
正确答案
见解析
解析
(1)当时,
, 解
得
;
解得
的单调增区间为
,减区间为
.
(2) ∵∴
得
,
,∴
∵在区间
上总不是单调函数,且
∴
,由题意知:对于任意的
,
恒成立,所以,
,∴
.
(3)证明如下: 由(Ⅰ)可知当时
,即
,
∴对一切
成立。
∵,则有
,∴
.
.
知识点
已知函数是
的导函数。
(1) 时,求
的最小值;
(2)若存在单调递增区间,求
的取值范围;
(3)若关于的不等式
在
恒成立,求
的取值范围。
正确答案
见解析。
解析
(1)定义域是
,
且,
令,得
,所以
在
上递减,在
递增,
所以。
(2),则据题意知
在
上有解。
即在
上有解,令
,可求得
,
则,故
的取值范围是:
。
(3)原不等式即,该不等式在
上恒成立.
若,则
,即
,在
上不恒成立,所以,
.
一方面,,即
,亦即
,
次不等式在上恒成立的充要条件是
。
另一方面,令,则
在
上恒成立等价于
。
又令
,得
,令
,得
,
所以
因此,即
综上, 。
注:第(3)问也可用分离参量法求解。
知识点
扫码查看完整答案与解析