- 椭圆及其性质
- 共751题
22.如图,
曲线由两个椭圆
:
和椭圆
:
组成,
当成等比数列时,称曲线
为“猫眼曲线”.
(1)若猫眼曲线过点
,且
的公比为
,求猫眼曲线
的方程;
(2)对于题(1)中的求猫眼曲线,任作斜率为
且不过原点的直线与该曲线相交,交椭圆
所得弦的中点为
,交椭圆
所得弦的中点为
,求证:
为与
无关的定值;
(3)若斜率为的直线
为椭圆
的切线,且交椭圆
于点
,
为椭圆
上的任意一点(点
与点
不重合),求
面积的最大值.
正确答案
(1),
;
(2)略;
(3).
解析
(1),
,
,
;
(2)设斜率为的直线交椭圆
于点
,
线段中点
由
,
得
存在且
,
,
且 ,
即
同理, 得证
(3)设直线的方程为
联立方程
,
化简得
,
联立方程,
化简得
,
两平行线间距离:
的面积最大值
注:若用第一小题结论,
算得:
的面积最大值为
考查方向
本题主要考查椭圆的标准方程与性质,考查椭圆与直线的位置关系,考查化简运算能力与对新定力的概念的即时学习能力.
解题思路
(1)根据定义求得猫眼曲线Γ的方程;
(2)设交点,由中点公式可得
,联立方程,化简可得
,同理可得
,两式相除消去
,即证
为与
无关的定值
;
(3)设直线的方程为
,联立方程,化简,从而可得
的方程,同理可得
的方程,再利用两平行线间距离表示三角形的高,再求|AB|,从而求得最大面积.
易错点
1.对新定义的“猫眼曲线”的概念的不理解,即时学习能力不够;
2.解析几何中繁琐的化简容易出错,特别是带字母的化简运算.
知识点
19.已知椭圆:
的离心率为
,点
在椭圆C上,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设动直线与椭圆
有且仅有一个公共点,且
与圆
相交于不在坐标轴上的两点
,
,记直线
,
的斜率分别为
,
,求证:
为定值.
正确答案
(Ⅰ)椭圆的方程为
解析
(Ⅰ)解:由题意,得,
,
又因为点在椭圆
上,
所以,
解得,
,
,
所以椭圆C的方程为.
(Ⅱ)证明:当直线的斜率不存在时,由题意知
的方程为
,
易得直线,
的斜率之积
.
当直线的斜率存在时,设
的方程为
.
由方程组 得
,
因为直线与椭圆C有且只有一个公共点,
所以,即
.
由方程组 得
,
设,
,则
,
,
所以
,
将代入上式,
得.
综上,为定值
.
考查方向
解题思路
1、每一问通过椭圆离心率,点在椭圆上和
列出方程组即可求出
的值从而求出椭圆的方程。
2、第二问求证为定值,通过设
,
可知
,于是可考虑运用韦达定理把
表达出来求解,从而得出解题的思路:即当(1)斜率不存在时,求
;(2)斜率存在时,设
的方程分别与圆、椭圆联立方程组进而求解。
易错点
对于第二问不考虑斜率存在与否直接解答从而导致考虑不全面而失分。
知识点
20.椭圆与
的中心在原点,焦点分别在
轴与
轴上,它们有相同的离心率
,并且
的短轴为
的长轴,
与
的四个焦点构成的四边形面积是
.
(1)求椭圆与
的方程;
(2)设是椭圆
上非顶点的动点,
与椭圆
长轴两个顶点
,
的连线
,
分别与椭圆
交于点
,
.
①求证:直线,
斜率之积为常数;
②直线与直线
的斜率之积是否为常数?若是,求出该值;若不是,说明理由.
正确答案
(1);
(2)直线,
斜率之积为常数
;
.
解析
试题分析:本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难,
(1)直接按照步骤来求
(2)要注意对参数的讨论.
解:(1)依题意,
设:
,
:
,
由对称性,四个焦点构成的四边形为菱形,
且面积,
解得:,
所以椭圆:
,
:
(2)①设,
则,
,
,
所以:,
直线,
斜率之积为常数
②设
,
则,
,
,
所以:,
同理:所以:
,由
,
,
结合(1)有
考查方向
本题考查了椭圆的标准方程和直线与椭圆的位置关系,属于高考中的高频考点.
解题思路
本题考查圆锥曲线与直线的位置关系,解题步骤如下:
1、利用e及对称性求a,b。
2、联立直线与椭圆方程求解。
易错点
第二问中表示直线斜率时容易出错。
知识点
20.已知椭圆C:
+
= 1(a >b >0) 的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y + 12 = 0相切.(1)求椭圆C的方程,(2)设A( -4,0),过点R(3,0)作与x轴不重合的直线L交椭圆C于P,Q两点,连接AP,AQ分别
交直线x =
于M,N两点,若直线MR、NR的斜率分别为
k1,k2 ,试问: k1 k2是否为定值?若是,求出该定值,若不是,请说明理由.
正确答案
(1);
(2)
解析
试题分析:本题属于解析几何的基本问题,题目的难度是逐渐由易到难,
(1)直接按照步骤来求
(2)要注意计算的准确性,利用三点共线解题
(1)由题意得,解得
,故椭圆的方程为
;
(2)设,直线PQ的方程为
,
由得
,所以
由A,P,M三点共线可知,,同理可得
,
所以
考查方向
本题考查了椭圆的集合性质和直线与椭圆的位置关系
解题思路
(1)由已知条件推导出,由此求出椭圆C的方程;
(2)设设,直线PQ的方程为
,与椭圆方程联立,得到
,利用韦达定理求出斜率k1 k2为定值
易错点
1、第一问中的易丢对a的分类讨论。
2、第二问计算的准确性;
知识点
19.已知椭圆C:的离心率为
,点
在椭圆C上。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设动直线与椭圆C有且仅有一个公共点,判断是否存在以原点O为圆心的圆,满足此圆与
相交两点
,
(两点均不在坐标轴上),且使得直线
,
的斜率之积为定值?若存在,求此圆的方程;若不存在,说明理由。
正确答案
(Ⅰ);
(Ⅱ),
.
解析
试题分析:本题属于解析几何的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求,(2)要注意直线不存在斜率的特殊情况,(3)要注意计算结果去正确性
(Ⅰ)解:由题意,得,
,
又因为点在椭圆
上,
所以,
解得,
,
,
所以椭圆C的方程为.
(Ⅱ)结论:存在符合条件的圆,且此圆的方程为.
证明如下:
假设存在符合条件的圆,并设此圆的方程为.
当直线的斜率存在时,设
的方程为
.
由方程组 得
,
因为直线与椭圆
有且仅有一个公共点,
所以,即
.
由方程组 得
,
则.
设,
,则
,
,
设直线,
的斜率分别为
,
,
所以
,
将代入上式,得
.
要使得为定值,则
,即
,验证符合题意.
所以当圆的方程为时,圆与
的交点
满足
为定值
.
当直线的斜率不存在时,由题意知
的方程为
,
此时,圆与
的交点
也满足
.
综上,当圆的方程为时,圆与
的交点
满足斜率之积
为定值
.
考查方向
本题主要考查了椭圆的标准方程、直线与椭圆的位置关系,直线与圆锥曲线的位置关系的考查主要分以下几类:
1.直线与圆锥曲线的公共点个数问题,
2.弦长问题,
3.中点弦问题.
解题思路
本题考查直线与椭圆的位置关系,解题步骤如下:
1.利用待定系数法求出椭圆的标准方程;
2.假设存在,设出圆的方程与直线方程;
3.联立直线与椭圆的方程,化简得到关于的一元二次方程,利用判别式为0求得
的关系;
4.联立直线与圆的方程,化简得到关于的一元二次方程,利用平面向量的数量积求解;
5.讨论直线斜率不存在的情况,得到结论。
易错点
1、第二问中,联立直线与圆的方程得到关于关于的一元二次方程后,要注意验证判别式为正值;
2、第二问中,不要忘记“直线无斜率”的特殊情况。
知识点
20.在平面直角坐标系中,已知椭圆
的离心率
,且椭圆
上一点
到点
的距离的最大值为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设,
为抛物线
上一动点,过点
作抛物线
的切线交椭圆
于
,
两点,求
面积的最大值.
正确答案
(Ⅰ)
(Ⅱ)
解析
(Ⅰ)因为,所以
.
则椭圆方程为即
.
设,则
.
当时,
有最大值为
.
解得,则
.
所以椭圆的方程是
.
(Ⅱ)设曲线:
上的点
,因为
,
所以直线的方程为:
. ①
将①代入椭圆方程中整理,
得.
则有.
且.
所以
.
设点到直线
的距离为
,则
.
所以的面积
.
.
当时取到“=”,经检验此时
,满足题意.
综上,面积的最大值为
.
考查方向
解题思路
易错点
第一问未能利用|MQ|最大值求出b;第二问运算量较大,代数式化简容易出错。
知识点
22.如图,曲线由两个椭圆
:
和椭圆
:
组成,当
成等比数列时,称曲线
为“猫眼曲线”.
(1)若猫眼曲线
过点
,且
的公比为
,求猫眼曲线
的方程;
(2) 对于题(1)中的求猫眼曲线,任作斜率为
且不过原点的直线与该曲线相交,交椭圆
所得弦的中点为
,交椭圆
所得弦的中点为
,求证:
为与
无关的定值;
(3) 若斜率为的直线
为椭圆
的切线,且交椭圆
于点
,
为椭圆
上的任意一点(点
与点
不重合),求
面积的最大值.
正确答案
(1) ,
;
(2)证法略;
(3)
解析
(1),
,
,
;
(2)设斜率为的直线交椭圆
于点
,线段
中点
由,得
存在且
,
,且
,即
同理,
得证
(3)设直线的方程为
,
,
,
,
两平行线间距离:
的面积最大值为
注:若用第一小题结论,算得:
的面积最大值为
考查方向
解题思路
本题考查了椭圆的定义,方程的求法,直线与椭圆的位置关系,解题步骤如下:
(1)待定系数法求出椭圆方程;
(2)点差法推导直线的斜率的关系;
(3)利用设而不求,弦长公式求解三角形面积,
易错点
注意焦点位置的变化,区分几何意义的转变。
知识点
20.椭圆,作直线
交椭圆于
两点,
为线段
的中点,
为坐标原点,设直线
的斜率为
,直线
的斜率为
,
.
(1)求椭圆的离心率;
(2)设直线与
轴交于点
,且满足
,当
的面积最大时,求椭圆
的方程.
正确答案
(1);
(2).
解析
试题分析:本题属于椭圆的几何性质、直线与椭圆的位置关系、基本不等式.等知识点的综合应用问题,属于拔高题,第二问不容易得分,解析如下:
(1)设,
,代入椭圆C的方程有:
, 、
两式相减:,
即,
又,
联立两个方程有,
解得:.
(2)由(1)知,得
,
可设椭圆C的方程为:,
设直线l的方程为:,代入椭圆C的方程有
,
因为直线l与椭圆C相交,所以,
由韦达定理:,
.
又,所以
,
代入上述两式有:,
所以
,
当且仅当时,等号成立,此时
,代入
,有
成立,
所以所求椭圆C的方程为:.
考查方向
解题思路
(1)设,
,并分别代入椭圆方程中,然后两式相减,利用直线斜率公式求得
,从而求得离心率;
(2)设椭圆的方程为:
,直线
的方程为:
,然后联立椭圆与直线的方程得到关于
的二次方程,然后由
,及利用韦达定理得出
的表达式,从而利用基本不等式求得椭圆
的方程.
易错点
相关知识点不熟容易证错。
知识点
20.已知椭圆C的中心在坐标原点O,左焦点为F(-l,0),离心率为
(1)求椭圆C的标准方程;
(2)过点F的直线,与椭圆C交于A、B两点,设(其中1<入<3),求
的取值范围,
正确答案
(1);(2)
.
解析
试题分析:本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意对参数的讨论.
(1);
(2)由(其中1<入<3)知,直线l不水平,设l:x=my-1,A(x1,y1),B(x2,y2)
联立:消x得:(2+m2)y2-2my-1=0,得
①
由(其中1<入<3)得y1= -λy2……② 则
,
令t=,则0<t<
,得
……③。
=x1x2+y1y2=(my1-1)(my2-1)+y1y2=(1+m2)y1y2-m(y1+y2)+1=
,
将③代入,得=
,从而
∈
。
考查方向
本题考查了椭圆的标准方程和直线与椭圆的位置关系、平面向量等知识点.
解题思路
本题考查圆锥曲线与直线的位置关系,解题步骤如下:
(1)利用e和c求a,b。
(2)联立直线与椭圆方程求解。
易错点
(1)第二问中的易丢对a的分类讨论。
知识点
21.已知椭圆与椭圆
:
共焦点,并且经过点
,
(1)求椭圆的标准方程;
(2)在椭圆上任取两点
,设
所在直线与
轴交于点
,点
为点
关于轴
的对称点,
所在直线与
轴交于点
,探求
是否为定值?若是,求出该定值;若不是,请说明理由.
正确答案
(1)
(2)定值为4.
解析
(1)
(2)当斜率不存在时,不合题意.
故设为
,(
),则
,设点
,则
,设
,则
方程为
,令
,则
由得
,则
.则
,
故,所以
所以
是定值,定值为4.
考查方向
本题主要考查直线与椭圆的位置关系和性质。
解题思路
设出直线方程,与椭圆方程联立,巧用韦达定理设而不求。
易错点
第二问中运算较烦,学生没有耐心,不细心,所以很容易出错。
知识点
扫码查看完整答案与解析