热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 13 分

如图,椭圆E:的离心率是,过点P(0,1)的动直线与椭圆相交于A,B两点,当直线平行与时,直线被椭圆E截得的线段长为.

25.求椭圆E的方程;

26.在平面直角坐标系中,是否存在与点P不同的定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.

第(1)小题正确答案及相关解析

正确答案

解析

由已知,点在椭圆E上.

因此,

解得.

所以椭圆的方程为.

考查方向

本题考查椭圆的标准方程与几何性质、直线方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想.

解题思路

根据椭圆的对称性,当直线轴平行时,,将这个点的坐标代入椭圆的方程,得.再根据离心率得,又,三者联立,解方程组即可得,进而得椭圆的方程为.

易错点

不会转化题中给出的条件

第(2)小题正确答案及相关解析

正确答案

存在,Q点的坐标为.

解析

当直线轴平行时,设直线与椭圆相交于C、D两点.

如果存在定点Q满足条件,则,即.[来源:Z。xx。k.Com]

所以Q点在y轴上,可设Q点的坐标为.

当直线轴垂直时,设直线与椭圆相交于M、N两点.

,有,解得.

所以,若存在不同于点P的定点Q满足条件,则Q点的坐标只可能为.

下面证明:对任意的直线,均有.

当直线的斜率不存在时,由上可知,结论成立.

当直线的斜率存在时,可设直线的方程为,A、B的坐标分别为.

联立.

其判别式

所以,.

因此.

易知,点B关于y轴对称的点的坐标为.

所以,即三点共线.

所以.

故存在与P不同的定点,使得恒成立.

考查方向

本题考查椭圆的标准方程与几何性质、直线方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想.

解题思路

先利用轴平行和垂直这两种特殊情况找出点Q的坐标为.接下来联立直线与椭圆的方程,利用根与系数的关系证明:对任意的直线,均有.设,由图可看出,为了证明,只需证明,为此作点B关于y轴对称的点,这样将问题转化为证三点共线.

易错点

想不到先解决特色情况再证明一般情况。

1
题型:简答题
|
简答题 · 13 分

已知椭圆E的四个顶点构成一个面积为的四边形,该四边形的一个内角为60°.

24.求椭圆的方程;

25.直线l与椭圆E相交于AB两个不同的点,线段AB的中点为CO为坐标原点,若△OAB面积为,求的最大值.

第(1)小题正确答案及相关解析

正确答案

(Ⅰ)

解析

试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,(1)按照解题步骤求解,(2)要注意讨论直线不存在斜率的特殊情况;

(Ⅰ)由题解得

所以椭圆E的方程为

考查方向

本题主要考查了椭圆的标准方程、直线和椭圆的位置关系,直线与椭圆的位置关系的考查主要分以下几类:1.由弦长有关的问题,2.与弦的中点有关的问题,3.与对称有关的问题.

解题思路

本题考查椭圆的标准方程、直线和椭圆的位置关系,解题步骤如下:

1)利用椭圆的内接四边形和椭圆的几何元素间的关系进行求解;

2)联立直线与椭圆的方程,得到关于的一元二次方程;

3)利用判别式、根与系数的关系和弦长公式求弦长;

4)利用点到直线的距离公式和三角形的面积公式求面积表达式;

5)利用基本不等式求最值。

易错点

1)忽视椭圆顶点的对称性;

2)忽视基本不等式求最值时的取等条件.

第(2)小题正确答案及相关解析

正确答案

(Ⅱ)2.

解析

试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,(1)按照解题步骤求解,(2)要注意讨论直线不存在斜率的特殊情况;

(Ⅱ)设A(x1y1),B(x2y2),

(1)当l的斜率不存在时,AB两点关于x轴对称,

由△OAB面积,可得

(2)当l的斜率存在时,设直线l

联立方程组消去y,得

,(*)

原点O到直线l的距离

所以△OAB的面积

整理得,即

所以,即,满足

结合(*)得

C,所以

所以

当且仅当,即m=±1时,等号成立,

,综上的最大值为2.

考查方向

本题主要考查了椭圆的标准方程、直线和椭圆的位置关系,直线与椭圆的位置关系的考查主要分以下几类:1.由弦长有关的问题,2.与弦的中点有关的问题,3.与对称有关的问题.

解题思路

本题考查椭圆的标准方程、直线和椭圆的位置关系,解题步骤如下:

1)利用椭圆的内接四边形和椭圆的几何元素间的关系进行求解;

2)联立直线与椭圆的方程,得到关于的一元二次方程;

3)利用判别式、根与系数的关系和弦长公式求弦长;

4)利用点到直线的距离公式和三角形的面积公式求面积表达式;

5)利用基本不等式求最值。

易错点

1)忽视椭圆顶点的对称性;

2)忽视基本不等式求最值时的取等条件.

1
题型:简答题
|
简答题 · 14 分

如图所示,椭圆C1:+=1(a>b>0)的离心率为,x轴被曲线C2yx2b截得的线段长等于C1的短轴长.C2y轴的交点为M,过坐标原点O的直线lC2相交于点AB,直线MAMB分别与C1相交于点DE.

24.求C1C2的方程

25.求证:MAMB

26.  记△MAB,△MDE的面积分别为S1S2,若=λ,求λ的取值范围.

第(1)小题正确答案及相关解析

正确答案

C1的方程:+y2=1;C2的方程:y=x2-1

解析

由题意,知=,所以a2=2b2. ……1分

又2=2b,得b=1. ……2分

所以曲线C2的方程:y=x2-1,椭圆C1的方程:+y2=1. ……3分

考查方向

主要考查直线与圆锥曲线的综合应用能力,具体涉及到抛物线的方程,椭圆的方程,直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.

解题思路

根据题意直接列出a,b,c方程, 可求出两条曲线的方程

易错点

易在运算中出错,在转化直线与圆锥曲线关系过程中,易在切入点出错

第(2)小题正确答案及相关解析

正确答案

解析

证明 设直线AB:y=kx,A(x1,y1),B(x2,y2),由题意,知M(0,-1).

则⇒x2-kx-1=0,  ……4分

则x1·x2=-1,x1+x2=k,

=(x1,y1+1)·(x2,y2+1)=(k2+1)x1x2+k(x1+x2)+1=-(1+k2)+k2+1=0,

所以MA⊥MB. ……7分

考查方向

主要考查直线与圆锥曲线的综合应用能力,具体涉及到抛物线的方程,椭圆的方程,直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.

解题思路

设直线方程、交点坐标. 通过向量的数量积等于零, 证明两条线互相垂直

易错点

易在运算中出错,在转化直线与圆锥曲线关系过程中,易在切入点出错

第(3)小题正确答案及相关解析

正确答案

[,+∞)

解析

解: 设直线MA的方程:y=k1x-1,直线MB的方程:y=k2x-1,……8分

由25题知k1k2=-1,M(0,-1),

由解得或 ……9分

所以A(k1,k-1).同理,可得B(k2,k-1).……10分

故S1=|MA|·|MB|=·|k1||k2|.

由解得或

所以D(,).同理,可得E(,).……11分

故S2=|MD|·|ME|=·,

=λ==≥,……13分

则λ的取值范围是[,+∞).……14分

考查方向

主要考查直线与圆锥曲线的综合应用能力,具体涉及到抛物线的方程,椭圆的方程,直线与圆锥曲线的相关知识. 本小题对考生的化归与转化思想、运算求解能力都有很高要求.

解题思路

设MA,MB的方程,通过与抛物线,椭圆联立方程组,解出A,B,D,E的坐标,然后分别用表示面积,把表示成关于的关系式,最后用均值不等式求解λ的取值范围.

易错点

易在运算中出错,在转化直线与圆锥曲线关系过程中,易在切入点出错

1
题型: 单选题
|
单选题 · 5 分

3.若双曲线的顶点和焦点分别为椭圆的焦点和顶点,则该双曲线方程为( )

A

B

C

D

正确答案

A

解析

由椭圆方程知焦点坐标为,顶点坐标为,所以双曲线的顶点坐标为,焦点坐标为,从而其,故双曲线方程为

因此B选项不正确,C选项不正确,D选项不正确,所以选A选项。

考查方向

本题主要考查了椭圆与双曲线的焦点与顶点坐标,考查考生对两种曲线基本量的理解和转化能力。

解题思路

根据已知椭圆方程写出其焦点和顶点坐标,从而知双曲线的顶点和焦点坐标,由此确定a,b,c的值最后给出双曲线的方程。因此B选项不正确,C选项不正确,D选项不正确,所以选A选项。

易错点

易混淆椭圆与双曲线中a,b,c之间的关系以及a,b,c在两种曲线中所表示的意义。

知识点

椭圆的几何性质双曲线的几何性质
1
题型:填空题
|
填空题 · 5 分

16.已知直线与椭圆相交于两点,若椭圆上存在点,使得是等边三角形,则椭圆的离心率_____.

正确答案

解析

根据椭圆参数方程设出B点坐标(acost,bsint),由为正三角形知

从而得出点P (-asint,bcost),

,而tant= 整理得,所以可算得e.=

考查方向

本题主要考查了椭圆方程及性质,考查考生数形结合思想和运算求解能力。

解题思路

根据椭圆参数方程设出B点坐标(acost,bsint),由为正三角形知从而得出点P(-asint,bcost),又,而tant= 整理得,所以可算得e.

易错点

为等边三角形的处理不灵活导致运算量大

知识点

椭圆的定义及标准方程椭圆的几何性质直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

9.已知是椭圆的左、右焦点,过且垂直于轴的直线与椭圆交于

两点,若是锐角三角形,则该椭圆离心率的取值范围是(   ).

A

B

C

D

正确答案

C

解析

由已知条件画出简图,由图可知,所以,又因为在椭圆中,所以,即,所以,即,解得,所以,应选C。

考查方向

本题主要考查椭圆的简单几何性质以及离心率的问题.

解题思路

1.根据已知条件画出草图;2.由椭圆的性质得到不等关系;3.求离心率的范围。

易错点

本题易在不会由平面几何的知识得到等量关系。

知识点

椭圆的定义及标准方程椭圆的几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知椭圆离心率为,以原点为圆心,以椭圆C的短半轴长为半径的圆O与直线相切。

23.求椭圆C的方程;

24.设不过原点O的直线与该椭圆交于PQ两点,满足直线OP

PQOQ的斜率依次成等比数列,求△OPQ面积的取值范围。

第(1)小题正确答案及相关解析

正确答案

(1)

解析

:(1)  由直线与圆 相切得:

 得

     

椭圆C的方程为

考查方向

本题主要考查圆锥曲线的性质和直线与圆锥曲线的位置关系等知识,意在考查考生的运算求解能力和综合解决问题的能力。

解题思路

问先根据与圆 相切得:

,后利用离心率求出答案;

易错点

不会转化与圆 相切导致出错;

第(2)小题正确答案及相关解析

正确答案

(2)(0,1)

解析

(2)由题意可知,直线的斜率存在且不为0,故可设直线l的方程为

ykxm(m≠0),P(x1y1),Q(x2y2),

由消去y得(1+4k2)x2+8kmx+4(m2-1)=0,

Δ=64k2m2-16(1+4k2)(m2-1)=16(4k2m2+1)>0,

x1x2=,x1x2=.

y1y2=(kx1m)(kx2m)=k2x1x2km(x1x2)+m2.

因为直线OPPQOQ的斜率依次成等比数列,

所以·==k2

即+m2=0,  又m≠0,所以k2=,即k=±.

Δ>0,及直线OPOQ的斜率存在,得0<m2<2且m2≠1.

SOPQ=|x1x2||m|=

所以SOPQ的取值范围为(0,1).

考查方向

本题主要考查圆锥曲线的性质和直线与圆锥曲线的位置关系等知识,意在考查考生的运算求解能力和综合解决问题的能力。

解题思路

设出直线的方程后与椭圆的方程联立消元导出韦达定理后将直线OPPQOQ的斜率依次成等比数列,求出.,后利用SOPQ即可得到答案。

易错点

不会转化OPPQOQ的斜率依次成等比数列导致问题找不到突破口。

1
题型:简答题
|
简答题 · 13 分

20. 如图:A,B,C是椭圆的顶点,点为椭圆的右焦点,原点O到直线CF的距离为,且椭圆过点.

(I)求椭圆的方程;

(II)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为,问是否存在实数,使得成立,若存在求出的值,若不存在,请说明理由.

正确答案

见解析

解析

考查方向

本题考察了椭圆的定义及标准方程,,考察了圆锥曲线的定点、定值问题,

解题思路

1)点到直线的距离公式得到a,b的关系,根据点在椭圆上联立求出椭圆方程

2)设点p,根据要求求出直线AP,与直线BC求出点D

3)根据直线CP得到点E

4)使用两点间斜率公式得到DE斜率,化简得到结论

易错点

本题主要有以下几个错误:

1)椭圆方程求错

2)找不到有效突破点,导致运算量加大,无法得出理想结果

知识点

椭圆的定义及标准方程椭圆的几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

已知椭圆)的离心率,左顶点与右焦点的距离

24.求椭圆的方程;

25.过右焦点作斜率为的直线与椭圆交于两点, 为定点,当△的面积最大时,求l的方程.

第(1)小题正确答案及相关解析

正确答案

(1)

解析

(Ⅰ)由得:,①

,②

由①②得:

椭圆的方程为

考查方向

本题主要考查圆锥曲线的性质,直线与圆锥曲线的位置关系,方程思想的应用,意在考查考生运算求解、分析问题解决问题的能力。

解题思路

根据椭圆的基本信息求解即可,

易错点

不会构造函数

第(2)小题正确答案及相关解析

正确答案

(2)

解析

(Ⅱ)过右焦点斜率为的直线

联立方程组:

消元得:

设交点

到直线的距离

所以△的面积

,则

,单调递增, ,所以最大值为

此时,l的方程:

考查方向

本题主要考查圆锥曲线的性质,直线与圆锥曲线的位置关系,方程思想的应用,意在考查考生运算求解、分析问题解决问题的能力。

解题思路

设所求的直线方程,然后联立消元得到两根之和与之积,后构建△的面积,最后利用基本不等式求出最值。

易错点

不会利用换元求面积的最值。

1
题型:简答题
|
简答题 · 14 分

已知椭圆离心率为,点在短轴CD上,

且 .

23.求椭圆E的方程;

24.过点P的直线与椭圆E交于A,B两点.

(i)若,求直线的方程;

(ii)在y轴上是否存在与点P不同的定点Q,使得恒成立,若存在,求出点Q的坐标,若不存在,请说明理由.

第(1)小题正确答案及相关解析

正确答案

考查方向

本题主要考查的是椭圆的标准方程。直线与椭圆的位置关系。解析几何存在性问题

解题思路

由题意,根据数量积求得方程中的待定的a,b.(2).按照解析几何的常规思路求解,

先讨论直线方程的斜率问题,然后联系方程组,求方程的再向已经条件转化;

易错点

解析几何易出现对于直线方程的分类讨论上的错,再就是直线与曲线联系以后,寻求变量之间的联系时,易出现转化和计算,代数整理上的错误。

第(2)小题正确答案及相关解析

正确答案

解析

解:(1)当直线不存在斜率时,|PB|=, |AP|=, 不符合题意,

考查方向

本题主要考查的是椭圆的标准方程。直线与椭圆的位置关系。解析几何存在性问题

解题思路

也是要讨论直线方程的斜率两种情况,假设存在,Q,使得恒成立,将数量关系转成坐标,进而转化成题中所设的直线方程的斜率K上,注意问题的充要性证明。

易错点

解析几何易出现对于直线方程的分类讨论上的错,再就是直线与曲线联系以后,寻求变量之间的联系时,易出现转化和计算,代数整理上的错误。

下一知识点 : 双曲线及其性质
百度题库 > 高考 > 理科数学 > 椭圆及其性质

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题