热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

已知点和椭圆

26.设椭圆的两个焦点分别为,试求的周长及椭圆的离心率;

27.若直线与椭圆交于两个不同的点,直线轴分别交于两点,求证:

第(1)小题正确答案及相关解析

正确答案

;

解析

试题分析:本题是直线与圆锥曲线综合应用问题,解题时利用椭圆定义完成第一问。再由“”要想到“”最终转换成“”,再利用韦达定理去完成。

(Ⅰ)由题意可知,,所以

因为是椭圆上的点,由椭圆定义得

所以的周长为

易得椭圆的离心率.………………………………………………………4分

考查方向

本题考查椭圆的标准方程和几何性质、直线方程与圆锥曲线综合应用等基础知识和方法,考查用代数的方法研究圆锥曲线的性质及数形结合的思想应用,意在考查运算能力和分析问题和解决问题的能力,较难.

解题思路

本题考查直线与圆锥曲线综合应用问题,解题步骤如下:

根据题意是椭圆上的点,由椭圆定义得,易得离心率。

本题第二问由“”要想到“”最终转换成“”再利用韦达定理去研究,得到结论。

易错点

未注意到点在椭圆上而在运算中出错。本题第二问在“”的理解和转换成“”上极易出错。

第(2)小题正确答案及相关解析

正确答案

证明略.

解析

试题分析:本题是直线与圆锥曲线综合应用问题,解题时利用椭圆定义完成第一问。再由“”要想到“”最终转换成“”,再利用韦达定理去完成。

(Ⅱ)由

因为直线与椭圆有两个交点,并注意到直线不过点

所以解得

,则,

显然直线的斜率存在,设直线的斜率分别为

因为,所以

所以

考查方向

本题考查椭圆的标准方程和几何性质、直线方程与圆锥曲线综合应用等基础知识和方法,考查用代数的方法研究圆锥曲线的性质及数形结合的思想应用,意在考查运算能力和分析问题和解决问题的能力,较难.

解题思路

本题考查直线与圆锥曲线综合应用问题,解题步骤如下:

根据题意是椭圆上的点,由椭圆定义得,易得离心率。

本题第二问由“”要想到“”最终转换成“”再利用韦达定理去研究,得到结论。

易错点

未注意到点在椭圆上而在运算中出错。本题第二问在“”的理解和转换成“”上极易出错。

1
题型:简答题
|
简答题 · 16 分

如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.

23.求椭圆的标准方程;

24.过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.

第(1)小题正确答案及相关解析

正确答案

+y2=1;

解析

(1)由题意可得,e==

且c+=3,解得c=1,a=

则b=1,即有椭圆方程为+y2=1;

考查方向

本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.

解题思路

(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;

易错点

本题考查椭圆的方程和性质,在应用几何意义时易错.

第(2)小题正确答案及相关解析

正确答案

y=x﹣1或y=﹣x+1.

解析

(2)当AB⊥x轴,AB=,CP=3,不合题意;

当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),

将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,

则x1+x2=,x1x2=

则C(),且|AB|==

若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;

则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),

从而|PC|=

由|PC|=2|AB|,可得=,解得k=±1,

此时AB的方程为y=x﹣1或y=﹣x+1.

考查方向

本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.

解题思路

(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.

易错点

本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,计算易错.

1
题型:简答题
|
简答题 · 15 分

如图,已知椭圆的上顶点为,离心率为.

22.求椭圆的方程;

23. 若过点作圆的两条切线分别与椭圆相交于点(不同于点).当变化时,试问直线是否过某个定点?若是,求出该定点;若不是,请说明理由.

第(1)小题正确答案及相关解析

正确答案

解析

解: 由已知可得, ,

所求椭圆的方程为                     

考查方向

本题主要考查椭圆的标准方程,直线与圆的位置关系,直线与椭圆的位置关系,解析几何直线过定点问题

解题思路

列出a,b,c方程, 直接求椭圆的标准方程

易错点

解析几何易出现对于直线方程的分类讨论上的错误,其次就是直线与曲线联系以后,寻求变量之间的关系时,易出现转化、计算、代数整理的错误。

第(2)小题正确答案及相关解析

正确答案

直线过定点.

解析

解:设切线方程为,则,即

设两切线的斜率为,则是上述方程的两根,所以

;                       

得:,所以

同理可得:

所以,于是直线方程为

, 令,得

故直线过定点.                    ----------------------------15分

考查方向

本题主要考查椭圆的标准方程,直线与圆的位置关系,直线与椭圆的位置关系,解析几何直线过定点问题

解题思路

首先根据直线与圆相切得出,再根据直线和椭圆相交,联立方程组,求出B,D的坐标及BD的斜率, 写出BD的方程,得出BD过定点。

易错点

解析几何易出现对于直线方程的分类讨论上的错误,其次就是直线与曲线联系以后,寻求变量之间的关系时,易出现转化、计算、代数整理的错误。

1
题型:简答题
|
简答题 · 12 分

已知椭圆:的一个焦点为,而且过点.

求椭圆的方程;

设椭圆的上下顶点分别为,是椭圆上异于

的任一点,直线分别交轴于点,若直线

与过点的圆相切,切点为.证明:线段的长

为定值,并求出该定值.

第(1)小题正确答案及相关解析

正确答案

解析

试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,由方程思想求解出标准方程;

解法一:由题意得,,解得,所以椭圆的方程为.   解法二:椭圆的两个焦点分别为,由椭圆的定义可得,所以,,   所以椭圆的方程为.

考查方向

本题考查了求椭圆的方程和定值的证明问题,属于高考的热点问题,圆锥曲线常见的问题有弦长、中点、面积、角度和“定”问题——定点、定线和定值。

解题思路

本题考查圆锥曲线中求标准方程的方法和定值问题,解题步骤如下:由方程思想求解出标准方程;

易错点

无法理顺题设的关系导致解题受阻。

第(2)小题正确答案及相关解析

正确答案

解析

试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,根据题设求出与半径的长,再由垂径定理求出解法一:由(1)可知,设,直线:,令,得;直线:,令,得; …(6分) 设圆的圆心为,则,

,所以,所以,

所以,即线段的长度为定值.

解法二:由(Ⅰ)可知,设,

直线:,令,得;

直线:,令,得;则,而,所以,

所以,由切割线定理得所以,即线段的长度为定值

考查方向

本题考查了求椭圆的方程和定值的证明问题,属于高考的热点问题,圆锥曲线常见的问题有弦长、中点、面积、角度和“定”问题——定点、定线和定值。

解题思路

本题考查圆锥曲线中求标准方程的方法和定值问题,解题步骤如下:构建的求解方法——垂径定理。

易错点

无法理顺题设的关系导致解题受阻。

1
题型:简答题
|
简答题 · 13 分

已知椭圆的左右顶点分别为,点为椭圆上异于的任意一点.

24.求直线的斜率之积;

25.过点作与轴不重合的任意直线交椭圆两点.证明:以为直径的圆恒过点.

第(1)小题正确答案及相关解析

正确答案

直线的斜率之积为

解析

由题可得.  设点.

则有,即

考查方向

通过椭圆的定义及几何性质,直线与椭圆的位置关系等知识,考查考生数形结合及函数与方程的思想方法,同时也考查考生推理运算求解能力、等价转化思想,是近几年的高频考点,也是高考中圆锥曲线必不可少的内容。

解题思路

解题步骤如下:由椭圆的方程,可得到A ,B两点的坐标,设出点P(xy),即可表示出直线的斜率,将其代入椭圆方程,容易得出结论;

易错点

本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。

第(2)小题正确答案及相关解析

正确答案

见解析

解析

轴不重合, ∴设直线.由   得

由题意,可知成立,且 

   将(*)代入上式,化简得

,即以为直径的圆恒过点

考查方向

通过椭圆的定义及几何性质,直线与椭圆的位置关系等知识,考查考生数形结合及函数与方程的思想方法,同时也考查考生推理运算求解能力、等价转化思想,是近几年的高频考点,也是高考中圆锥曲线必不可少的内容。

解题思路

解题步骤如下:要证明以为直径的圆恒过点,只需证明即可.由于直线过点,由题可设直线l的方程,即代入到椭圆方程消去x,即可得到关于y的一元二次方程,再利用根与系数之间的关系,化简,,最后得0,即可证明结论。

易错点

本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。

1
题型:简答题
|
简答题 · 12 分

已知为椭圆上的一个动点,弦分别过左右焦点,且当线段的中点在轴上时,.

23.求该椭圆的离心率;

24.设,试判断是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.

第(1)小题正确答案及相关解析

正确答案

.e=

解析

当线段A的中点在y轴上时,AC垂直于轴,为直角三角形.

因为cos∠,所以||=3||,易知||=,由椭圆的定义||+||=2a

,所以e=

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

先证出为直角三角形,求出,再由定义得到a,b方程, 从中解出离心率

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

第(2)小题正确答案及相关解析

正确答案

+是定值6

解析

由23得椭圆方程为,焦点坐标为

(1)    当AB、AC的斜率都存在时,设,A()、B()、C()

则直线AC的方程为y=, 代入椭圆方程得,=0

 又,同理,+=6.

(2) 若AB⊥x轴,则=1,,这时也有.+=6.

综上所述,+是定值6

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

由23得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,验证是否为定值。

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

1
题型:简答题
|
简答题 · 12 分

已知为椭圆上的一个动点,弦分别过左右焦点,且当线段的中点在轴上时,.

24.求该椭圆的离心率;

25.设,试判断是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.

第(1)小题正确答案及相关解析

正确答案

.e=

解析

当线段A的中点在y轴上时,AC垂直于轴,为直角三角形.

因为cos∠,所以||=3||,易知||=,由椭圆的定义||+||=2a

,所以e=

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

先证出为直角三角形,求出,再由定义得到a,b方程, 从中解出离心率

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

第(2)小题正确答案及相关解析

正确答案

+是定值6

解析

由24得椭圆方程为,焦点坐标为,当AB、AC的斜率都存在时,设,A()、B()、C()

则直线AC的方程为y=, 代入椭圆方程得,=0

 又,同理,+=6

(2) 若AB⊥x轴,则=1,,这时也有.+=6.

综上所述,+是定值6

考查方向

本题主要考查的是椭圆的离心率,直线与椭圆的位置关系、解析几何定值问题

解题思路

由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,验证是否为定值。

易错点

解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。

1
题型:简答题
|
简答题 · 16 分

如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.

23.求椭圆的标准方程;

24.过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.

第(1)小题正确答案及相关解析

正确答案

+y2=1;

解析

(1)由题意可得,e==

且c+=3,解得c=1,a=

则b=1,即有椭圆方程为+y2=1;

考查方向

本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.

解题思路

(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;

易错点

本题考查椭圆的方程和性质,在应用几何意义时易错.

第(2)小题正确答案及相关解析

正确答案

y=x﹣1或y=﹣x+1.

解析

(2)当AB⊥x轴,AB=,CP=3,不合题意;

当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),

将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,

则x1+x2=,x1x2=

则C(),且|AB|==

若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;

则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),

从而|PC|=

由|PC|=2|AB|,可得=,解得k=±1,

此时AB的方程为y=x﹣1或y=﹣x+1.

考查方向

本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.

解题思路

(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.

易错点

本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,计算易错.

1
题型:简答题
|
简答题 · 12 分

如图,圆轴相切于点,与轴正半轴相交于两点(点在点的下方),且

23.求圆的方程;

24.过点任作一条直线与椭圆相交于两点

连接,求证:

第(1)小题正确答案及相关解析

正确答案

详见解析

解析

解:(Ⅰ)设圆的半径为),依题意,圆心坐标为.

∵ ∴ ,解得2分

∴ 圆的方程为4分

考查方向

求直线和圆的方程

解题思路

先求圆C的半径,然后带入方程中,求解参数

易错点

不能正确的设出坐标,找不到等量关系

第(2)小题正确答案及相关解析

正确答案

(Ⅱ)把代入方程,解得

即点6分

(1)当轴时,可知=0.

(2)当轴不垂直时,可设直线的方程为

联立方程,消去得,8分

设直线交椭圆于两点,则

,即10分

12分

考查方向

直线和圆的方程,直线和圆锥曲线的综合题

解题思路

设出直线AB的方程,联立方程,消去y,然后直线AN和直线BN的斜率的和等于0,证明角相等。

1
题型:简答题
|
简答题 · 12 分

若椭圆的左右焦点分别为,线段被抛物线的焦点内分成了的两段.

24.求椭圆的离心率;

25.过点的直线交椭圆于不同两点,且,当的面积最大时,求直线和椭圆的方程.

(2)【答案】设直线

,∴,即

由(1)知,,∴椭圆方程为

,消去

②,

由①②知,

当且仅当,即时取等号,此时直线方程为.

又当时,

∴由,得,∴椭圆方程为.

第(1)小题正确答案及相关解析

正确答案

(1)由题意知,,∴.

解析

(1)由题意知,,∴.

考查方向

本题考查椭圆与抛物线的应用问题,主要涉及到两者焦距、焦点问题

解题思路

由题意,可知,再根据椭圆中a,b,c的关系式,求出椭圆的离心率

易错点

线段的定比分点计算容易出错,离心率公式容易记错

教师点评

本题是椭圆焦距与抛物线焦点坐标的综合题,属于简单题,只要掌握线段定比分点的性质即可,在近几年中考到的频率较高,是解析几何中重要的一块

第(2)小题正确答案及相关解析

正确答案

直线方程为.

椭圆方程为.

解析

设直线

,∴,即

由(1)知,,∴椭圆方程为

,消去

②,

由①②知,

当且仅当,即时取等号,此时直线方程为.

又当时,

∴由,得,∴椭圆方程为.

考查方向

本题考查椭圆中三角形面积最大问题,主要涉及到直线与椭圆的焦点问题、向量在椭圆中的应用问题以及函数值域问题

解题思路

先设出直线方程,联立椭圆方程和直线方程,利用韦达定理,求出两根和积,再利用向量坐标运算,求出关系式,列出面积公式,利用均值不等式求出直线方程和椭圆方程

易错点

计算容易出错,不容易想到均值不等式

教师点评

本题是向量、曲线相交与均值不等式的综合应用题,是一道难度较大的题型,需要掌握直线的不同设法、设而不求法、向量运算与面积问题、均值不等式在最值问题上会经常使用,值得注意

下一知识点 : 双曲线及其性质
百度题库 > 高考 > 理科数学 > 椭圆及其性质

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题