- 椭圆及其性质
- 共751题
已知点和椭圆
.
26.设椭圆的两个焦点分别为,
,试求
的周长及椭圆的
离心率;
27.若直线与椭圆
交于两个不同的点
,
,直线
,
与
轴分别交于
,
两点,求证:
.
正确答案
;
;
解析
试题分析:本题是直线与圆锥曲线综合应用问题,解题时利用椭圆定义完成第一问。再由“”要想到“
”最终转换成“
”,再利用韦达定理去完成。
(Ⅰ)由题意可知,,
,所以
.
因为是椭圆
上的点,由椭圆定义得
.
所以的周长为
.
易得椭圆的离心率.………………………………………………………4分
考查方向
解题思路
本题考查直线与圆锥曲线综合应用问题,解题步骤如下:
根据题意是椭圆
上的点,由椭圆定义得
,易得离心率。
本题第二问由“”要想到“
”最终转换成“
”再利用韦达定理去研究,得到结论。
易错点
未注意到点在椭圆上而在运算中出错。本题第二问在“
”的理解和转换成“
”上极易出错。
正确答案
证明略.
解析
试题分析:本题是直线与圆锥曲线综合应用问题,解题时利用椭圆定义完成第一问。再由“”要想到“
”最终转换成“
”,再利用韦达定理去完成。
(Ⅱ)由得
.
因为直线与椭圆
有两个交点,并注意到直线
不过点
,
所以解得
或
.
设,
,则
,
,
,
.
显然直线与
的斜率存在,设直线
与
的斜率分别为
,
,
则
.
因为,所以
.
所以.
考查方向
解题思路
本题考查直线与圆锥曲线综合应用问题,解题步骤如下:
根据题意是椭圆
上的点,由椭圆定义得
,易得离心率。
本题第二问由“”要想到“
”最终转换成“
”再利用韦达定理去研究,得到结论。
易错点
未注意到点在椭圆上而在运算中出错。本题第二问在“
”的理解和转换成“
”上极易出错。
如图,在平面直角坐标系xOy中,已知椭圆+
=1(a>b>0)的离心率为
,且右焦点F到左准线l的距离为3.
23.求椭圆的标准方程;
24.过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.
正确答案
+y2=1;
解析
(1)由题意可得,e==
,
且c+=3,解得c=1,a=
,
则b=1,即有椭圆方程为+y2=1;
考查方向
解题思路
(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;
易错点
本题考查椭圆的方程和性质,在应用几何意义时易错.
正确答案
y=x﹣1或y=﹣x+1.
解析
(2)当AB⊥x轴,AB=,CP=3,不合题意;
当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),
将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,
则x1+x2=,x1x2=
,
则C(,
),且|AB|=
•
=
,
若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;
则k≠0,故PC:y+=﹣
(x﹣
),P(﹣2,
),
从而|PC|=,
由|PC|=2|AB|,可得=
,解得k=±1,
此时AB的方程为y=x﹣1或y=﹣x+1.
考查方向
解题思路
(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.
易错点
本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,计算易错.
如图,已知椭圆:
的上顶点为
,离心率为
.
22.求椭圆的方程;
23. 若过点作圆
的两条切线分别与椭圆
相交于点
(不同于点
).当
变化时,试问直线
是否过某个定点?若是,求出该定点;若不是,请说明理由.
正确答案
解析
解: 由已知可得, ,
所求椭圆的方程为
考查方向
解题思路
列出a,b,c方程, 直接求椭圆的标准方程
易错点
解析几何易出现对于直线方程的分类讨论上的错误,其次就是直线与曲线联系以后,寻求变量之间的关系时,易出现转化、计算、代数整理的错误。
正确答案
直线过定点
.
解析
解:设切线方程为,则
,即
,
设两切线的斜率为
,则
是上述方程的两根,所以
;
由得:
,所以
,
同理可得:,
所以,于是直线
方程为
, 令
,得
,
故直线过定点
. ----------------------------15分
考查方向
解题思路
首先根据直线与圆相切得出,再根据直线和椭圆相交,联立方程组,求出B,D的坐标及BD的斜率, 写出BD的方程,得出BD过定点。
易错点
解析几何易出现对于直线方程的分类讨论上的错误,其次就是直线与曲线联系以后,寻求变量之间的关系时,易出现转化、计算、代数整理的错误。
已知椭圆:
的一个焦点为
,而且过点
.
求椭圆的方程;
设椭圆的上下顶点分别为
,
是椭圆上异于
的任一点,直线
分别交
轴于点
,若直线
与过点
的圆
相切,切点为
.证明:线段
的长
为定值,并求出该定值.
正确答案
;
解析
试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,由方程思想求解出标准方程;
解法一:由题意得,
,解得
,所以椭圆
的方程为
. 解法二:椭圆的两个焦点分别为
,由椭圆的定义可得
,所以
,
, 所以椭圆
的方程为
.
考查方向
解题思路
本题考查圆锥曲线中求标准方程的方法和定值问题,解题步骤如下:由方程思想求解出标准方程;
易错点
无法理顺题设的关系导致解题受阻。
正确答案
解析
试题分析:本题属于圆锥曲线的基本问题,题目的难度是逐渐由易到难,根据题设求出与半径的长,再由垂径定理求出
。解法一:由(1)可知
,设
,直线
:
,令
,得
;直线
:
,令
,得
; …(6分) 设圆
的圆心为
,则
,
而,所以
,所以
,
所以,即线段
的长度为定值
.
解法二:由(Ⅰ)可知,设
,
直线:
,令
,得
;
直线:
,令
,得
;则
,而
,所以
,
所以,由切割线定理得
所以
,即线段
的长度为定值
考查方向
解题思路
本题考查圆锥曲线中求标准方程的方法和定值问题,解题步骤如下:构建的求解方法——垂径定理。
易错点
无法理顺题设的关系导致解题受阻。
已知椭圆的左右顶点分别为
,
,点
为椭圆上异于
的任意一点.
24.求直线与
的斜率之积;
25.过点作与
轴不重合的任意直线交椭圆
于
,
两点.证明:以
为直径的圆恒过点
.
正确答案
直线与
的斜率之积为
;
解析
由题可得. 设点
.
则有,即
考查方向
解题思路
解题步骤如下:由椭圆的方程,可得到A ,B两点的坐标,设出点P(x,y),即可表示出直线与
的斜率,将其代入椭圆方程,容易得出结论;
易错点
本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。
正确答案
见解析
解析
设,
,
与
轴不重合, ∴设直线
.由
得
由题意,可知成立,且
将(*)代入上式,化简得
∴,即以
为直径的圆恒过点
.
考查方向
解题思路
解题步骤如下:要证明以为直径的圆恒过点
,只需证明
即可.由于直线过点
,由题可设直线l的方程,即
代入到椭圆方程消去x,即可得到关于y的一元二次方程,再利用根与系数之间的关系,化简
,,最后得0,即可证明结论。
易错点
本题是综合性比较强的大题,涉及到的的知识点比较多,计算量较大,所以在计算时易发生错误 。
已知为椭圆
上的一个动点,弦
分别过左右焦点
,且当线段
的中点在
轴上时,
.
23.求该椭圆的离心率;
24.设,试判断
是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.
正确答案
.e=
解析
当线段A的中点在y轴上时,AC垂直于
轴,
为直角三角形.
因为cos∠,所以|
|=3|
|,易知|
|=
,由椭圆的定义|
|+|
|=2a
,所以e=
考查方向
解题思路
先证出为直角三角形,求出
,再由定义得到a,b方程, 从中解出离心率
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案
+
是定值6
解析
由23得椭圆方程为,焦点坐标为
(1) 当AB、AC的斜率都存在时,设,A()、B(
)、C(
)
则直线AC的方程为y=, 代入椭圆方程得,
=0
又
,同理,
,
+
=6.
(2) 若AB⊥x轴,则=1,
,这时也有.
+
=6.
综上所述,+
是定值6
考查方向
解题思路
由23得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,
,验证是否为定值。
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
已知为椭圆
上的一个动点,弦
分别过左右焦点
,且当线段
的中点在
轴上时,
.
24.求该椭圆的离心率;
25.设,试判断
是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.
正确答案
.e=
解析
当线段A的中点在y轴上时,AC垂直于
轴,
为直角三角形.
因为cos∠,所以|
|=3|
|,易知|
|=
,由椭圆的定义|
|+|
|=2a
,所以e=
考查方向
解题思路
先证出为直角三角形,求出
,再由定义得到a,b方程, 从中解出离心率
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案
+
是定值6
解析
由24得椭圆方程为,焦点坐标为
,当AB、AC的斜率都存在时,设,A(
)、B(
)、C(
)
则直线AC的方程为y=, 代入椭圆方程得,
=0
又
,同理,
,
+
=6
(2) 若AB⊥x轴,则=1,
,这时也有.
+
=6.
综上所述,+
是定值6
考查方向
解题思路
由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,
,验证是否为定值。
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
如图,在平面直角坐标系xOy中,已知椭圆+
=1(a>b>0)的离心率为
,且右焦点F到左准线l的距离为3.
23.求椭圆的标准方程;
24.过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.
正确答案
+y2=1;
解析
(1)由题意可得,e==
,
且c+=3,解得c=1,a=
,
则b=1,即有椭圆方程为+y2=1;
考查方向
解题思路
(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c的关系,可得b,进而得到椭圆方程;
易错点
本题考查椭圆的方程和性质,在应用几何意义时易错.
正确答案
y=x﹣1或y=﹣x+1.
解析
(2)当AB⊥x轴,AB=,CP=3,不合题意;
当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),
将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,
则x1+x2=,x1x2=
,
则C(,
),且|AB|=
•
=
,
若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;
则k≠0,故PC:y+=﹣
(x﹣
),P(﹣2,
),
从而|PC|=,
由|PC|=2|AB|,可得=
,解得k=±1,
此时AB的方程为y=x﹣1或y=﹣x+1.
考查方向
解题思路
(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.
易错点
本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,计算易错.
如图,圆与
轴相切于点
,与
轴正半轴相交于两点
(点
在点
的下方),且
.
23.求圆的方程;
24.过点任作一条直线与椭圆
相交于两点
,
连接,求证:
.
正确答案
详见解析
解析
解:(Ⅰ)设圆的半径为
(
),依题意,圆心坐标为
.
∵ ∴
,解得
.
2分
∴ 圆的方程为
.
4分
考查方向
求直线和圆的方程
解题思路
先求圆C的半径,然后带入方程中,求解参数
易错点
不能正确的设出坐标,找不到等量关系
正确答案
(Ⅱ)把代入方程
,解得
或
,
即点.
6分
(1)当轴时,可知
=0.
(2)当与
轴不垂直时,可设直线
的方程为
.
联立方程,消去
得,
.
8分
设直线交椭圆于
两点,则
,
.
∴
若,即
10分
∵,
∴ .
12分
考查方向
直线和圆的方程,直线和圆锥曲线的综合题
解题思路
设出直线AB的方程,联立方程,消去y,然后直线AN和直线BN的斜率的和等于0,证明角相等。
若椭圆的左右焦点分别为
,线段
被抛物线
的焦点
内分成了
的两段.
24.求椭圆的离心率;
25.过点的直线
交椭圆于不同两点
,且
,当
的面积最大时,求直线
和椭圆的方程.
(2)【答案】设直线,
,
∵,∴
,即
①
由(1)知,,∴椭圆方程为
由,消去
得
,
∴②,
③
由①②知,,
∵,
∴,
当且仅当,即
时取等号,此时直线方程为
或
.
又当时,
,
∴由,得
,∴椭圆方程为
.
正确答案
(1)由题意知,,∴
,
.
解析
(1)由题意知,,∴
,
.
考查方向
本题考查椭圆与抛物线的应用问题,主要涉及到两者焦距、焦点问题
解题思路
由题意,可知,再根据椭圆中a,b,c的关系式,求出椭圆的离心率
易错点
线段的定比分点计算容易出错,离心率公式容易记错
教师点评
本题是椭圆焦距与抛物线焦点坐标的综合题,属于简单题,只要掌握线段定比分点的性质即可,在近几年中考到的频率较高,是解析几何中重要的一块
正确答案
直线方程为或
.
椭圆方程为.
解析
设直线,
,
∵,∴
,即
①
由(1)知,,∴椭圆方程为
由,消去
得
,
∴②,
③
由①②知,,
∵,
∴,
当且仅当,即
时取等号,此时直线方程为
或
.
又当时,
,
∴由,得
,∴椭圆方程为
.
考查方向
本题考查椭圆中三角形面积最大问题,主要涉及到直线与椭圆的焦点问题、向量在椭圆中的应用问题以及函数值域问题
解题思路
先设出直线方程,联立椭圆方程和直线方程,利用韦达定理,求出两根和积,再利用向量坐标运算,求出关系式,列出面积公式,利用均值不等式求出直线方程和椭圆方程
易错点
计算容易出错,不容易想到均值不等式
教师点评
本题是向量、曲线相交与均值不等式的综合应用题,是一道难度较大的题型,需要掌握直线的不同设法、设而不求法、向量运算与面积问题、均值不等式在最值问题上会经常使用,值得注意
扫码查看完整答案与解析