热门试卷

X 查看更多试卷
1 单选题 · 5 分

过点P(1,1)的直线将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为(  )

Ax+y-2=0

By-1=0

Cx-y=0

Dx+3y-4=0

1 单选题 · 5 分

设O为坐标原点,,是双曲线(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠P=60°,∣OP∣=,则该双曲线的渐近线方程为

Ay=0

Bx±y=0

C=0

D±y=0

1 简答题 · 12 分

在平面直角坐标系中,已知动点,点与点关于直线对称,且.直线是过点的任意一条直线。

(1)求动点所在曲线的轨迹方程;

(2)设直线与曲线交于两点,且,求直线的方程;

(3)设直线与曲线交于两点,求以的长为直径且经过坐标原点的圆的方程。

1 简答题 · 14 分

已知点在抛物线上,直线R,且与抛物线

相交于两点,直线分别交直线于点.

(1)求的值;

(2)若,求直线的方程;

(3)试判断以线段为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若

不是,说明理由。

1 简答题 · 14 分

已知双曲线C的两个焦点坐标分别为,双曲线C上一点P到距离差的绝对值等于2.

(1)求双曲线C的标准方程;

(2)经过点M(2,1)作直线l交双曲线C的右支于A,B两点,且M为AB的中点,求直线l的方程.

(3)已知定点G(1,2),点D是双曲线C右支上的动点,求的最小值。

1 填空题 · 5 分

与直线x+2y+3=0垂直,且与抛物线y = x2 相切的直线方程是          。

1 填空题 · 4 分

曲线在点(0,1)处的切线方程为           .

1 简答题 · 14 分

经过点且与直线相切的动圆的圆心轨迹为,点在轨迹上,且关于轴对称,过线段(两端点除外)上的任意一点作直线,使直线与轨迹在点处的切线平行,设直线与轨迹交于点

(1)求轨迹的方程;

(2)证明:

(3)若点到直线的距离等于,且△的面积为20,求直线的方程。

1 简答题 · 14 分

如图,已知椭圆C:  的左、右焦点分别为F1、F2,离心率为,点A是椭圆上任一点,△AF1F2的周长为.

(1)求椭圆C的方程;

(2)过点任作一动直线l交椭圆C于M,N两点,记,若在线段MN上取一点R,使得,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.

1 填空题 · 5 分

若直线与圆相交于,两点,且线段的中点坐标是,则直线的方程为().

下一知识点 : 直线的一般式方程与直线的平行关系
百度题库 > 高考 > 文科数学 > 直线的一般式方程
  • 上一题
  • 1/10
  • 下一题