热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题 · 5 分

已知两定点,若直线上存在点,使得,则该直线为“型直线”,给出下列直线,其中是“型直线”的是            。

  ②  ③ ④

正确答案

①④

解析

知识点

直线的一般式方程两点间的距离公式
1
题型:简答题
|
简答题 · 14 分

已知圆和圆,直线与圆相切于点;圆的圆心在射线上,圆过原点,且被直线截得的弦长为

(1)求直线的方程;

(2)求圆的方程。

正确答案

见解析。

解析

(1)(法一)∵点在圆上,

∴直线的方程为,即

(法二)当直线垂直轴时,不符合题意。

当直线轴不垂直时,设直线的方程为,即

则圆心到直线的距离,即:,解得

∴直线的方程为

(2)设圆,∵圆过原点,∴

∴圆的方程为

∵圆被直线截得的弦长为,∴圆心到直线的距离:

整理得:,解得

,∴

∴圆

知识点

直线的一般式方程圆的标准方程直线与圆相交的性质
1
题型:填空题
|
填空题 · 5 分

过点(﹣1,0)与函数f(x)=ex(e是自然对数的底数)图象相切的直线方程是  。

正确答案

y=x+1

解析

设切点为(a,ea

∵f(x)=ex,∴f′(x)=ex

∴f′(a)=ea

所以切线为:y﹣ea=ea(x﹣a),代入点(﹣1,0)得:

﹣ea=ea(﹣1﹣a),

解得a=0

因此切线为:y=x+1。

知识点

导数的几何意义直线的一般式方程
1
题型: 单选题
|
单选题 · 5 分

过点M(1 ,2)的直线l与圆交于A、B两点,C为圆心,当∠ACB 最小时, 直线l的方程是(    )

Ax-2y+3=0

B2x+y-4=0

Cx-y+1=0

Dx+y-3=0

正确答案

D

解析

略 

知识点

直线的一般式方程直线与圆相交的性质
1
题型:简答题
|
简答题 · 14 分

我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”。

如图,“盾圆”是由椭圆与抛物线中两段曲线弧合成,为椭圆的左、右焦点,为椭圆与抛物线的一个公共点,

(1)求椭圆的方程;

(2)是否存在过的一条直线,与“盾圆”依次交于四点,使得的面积比为?若存在,求出直线方程;若不存在,说明理由。

正确答案

见解析

解析

(1)由的准线为,故记

,所以,故椭圆为,         4分

(2) 设直线, 

联立,得,则     ①

联立,得,则                      ②

8分

的面积比

整理得                                     12分

, 由②知坐标为,不在“盾圆”上;

同理也不满足,故符合题意的直线不存在,                        14分

知识点

直线的一般式方程椭圆的定义及标准方程直线与圆锥曲线的综合问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 12 分

椭圆的离心率为,右焦点到直线的距离为.

(1)求椭圆的方程;

(2)过作直线交椭圆于两点,交轴于点,满足,求直线的方程.

正确答案

(1)

(2)y=x-1或y=-x-1

解析

(1)设右焦点为,则(舍去)(2分)

又离心率

故椭圆方程为. (4分)

(2)设,因为,所以①   (6分)

易知当直线的斜率不存在或斜率为0时,①不成立,

于是设的方程为,联立     ②          (8分)

因为,所以直线与椭圆相交,

于是③,④,

由①③得,代入④整理得

所以直线的方程是.           (12分)

知识点

向量在几何中的应用直线的一般式方程椭圆的定义及标准方程直线与圆锥曲线的综合问题
1
题型: 单选题
|
单选题 · 5 分

8.设动点在直线上,为坐标原点,以为直角边,为直角顶点作等腰,则动点的轨迹是(      )

A

B两条平行直线

C抛物线

D双曲线

正确答案

B

解析

解析已在路上飞奔,马上就到!

知识点

直线的一般式方程直接法求轨迹方程
1
题型:简答题
|
简答题 · 14 分

16.已知圆c以原点为圆心且经过点A(1,),直线l经过点

(1)求圆c的方程和直线l的一般方程;

(2)求与圆c相切且平行直线l的直线方程。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线的一般式方程圆的一般方程直线与圆的位置关系
1
题型: 单选题
|
单选题 · 5 分

6.曲线在点(1,1)处的切线方程为(   )

A

B

C

D

正确答案

A

解析

解析已在路上飞奔,马上就到!

知识点

导数的几何意义直线的一般式方程
1
题型:简答题
|
简答题 · 16 分

20.一束光线从点出发,经直线上一点反射后,恰好穿过点

(Ⅰ)求点关于直线的对称点的坐标;

(Ⅱ)求以为焦点且过点的椭圆的方程;

(Ⅲ)设过点的直线交椭圆于A.B两点,并且线段AB的中点在直线上,求直线AB的方程。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线的一般式方程直线关于点、直线对称的直线方程椭圆的定义及标准方程直线与圆锥曲线的综合问题
下一知识点 : 直线的一般式方程与直线的平行关系
百度题库 > 高考 > 文科数学 > 直线的一般式方程

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题