- 直线的一般式方程
- 共52题
已知点在抛物线上,直线R,且与抛物线
相交于两点,直线分别交直线于点.
(1)求的值;
(2)若,求直线的方程;
(3)试判断以线段为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若
不是,说明理由。
正确答案
见解析。
解析
(1)解:∵点在抛物线上, ∴.
解法1:(2)由(1)得抛物线的方程为.
设点的坐标分别为,依题意,,
由消去得,
解得.
∴.
直线的斜率,
故直线的方程为.
令,得,∴点的坐标为.
同理可得点的坐标为.
∴
.
∵, ∴.
由,得,
解得, 或,
∴直线的方程为,或.
(3)设线段的中点坐标为,
则
.
而,
∴以线段为直径的圆的方程为.
展开得.
令,得,解得或.
∴以线段为直径的圆恒过两个定点.
解法2:(2)由(1)得抛物线的方程为.
设直线的方程为,点的坐标为,
由解得
∴点的坐标为.
由消去,得,
即,解得或.
∴,.
∴点的坐标为.
同理,设直线的方程为,
则点的坐标为,点的坐标为.
∵点在直线上,
∴.
∴.
又,得,
化简得.
,
∵,
∴.
∴.
由,
得,
解得.
∴直线的方程为,或.
(3)设点是以线段为直径的圆上任意一点,
则,
得,
整理得,.
令,得,解得或.
∴ 以线段为直径的圆恒过两个定点.
知识点
设O为坐标原点,,是双曲线(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠P=60°,∣OP∣=,则该双曲线的渐近线方程为
正确答案
解析
选D,本题将解析几何与三角知识相结合,主要考察了双曲线的定义、标准方程,几何图形、几何性质、渐近线方程,以及斜三角形的解法,属中档题
知识点
在平面直角坐标系中,已知动点,点点与点关于直线对称,且.直线是过点的任意一条直线。
(1)求动点所在曲线的轨迹方程;
(2)设直线与曲线交于两点,且,求直线的方程;
(3)设直线与曲线交于两点,求以的长为直径且经过坐标原点的圆的方程。
正确答案
(1)(2)(3)
解析
(1)依据题意,可得点.
,
又,
.
所求动点的轨迹方程为.
(2) 若直线轴,则可求得,这与已知矛盾,因此满足题意的直线不平行于轴。
设直线的斜率为,则。
由 得。
设点,有 且恒成立(因点在椭圆内部)。
又,
于是,,即,
解得。
所以,所求直线
(3) 当直线轴时,,点到圆心的距离为1.即点在圆外,不满足题意.
满足题意的直线的斜率存在,设为,则.
设点,由(2)知,进一步可求得
依据题意,有,
,
即,解得.
所求圆的半径,
圆心为.
所求圆的方程为:
知识点
过点P(1,1)的直线将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )
正确答案
解析
当OP与该直线垂直时,符合题意;此时kOP=1,故所求直线斜率k=-1.又已知直线过点P(1,1),因此,直线方程为y-1=-(x-1),即x+y-2=0.
知识点
已知双曲线C的两个焦点坐标分别为,双曲线C上一点P到距离差的绝对值等于2.
(1)求双曲线C的标准方程;
(2)经过点M(2,1)作直线l交双曲线C的右支于A,B两点,且M为AB的中点,求直线l的方程.
(3)已知定点G(1,2),点D是双曲线C右支上的动点,求的最小值。
正确答案
见解析。
解析
(1)依题意,得双曲线C的实半轴长为a=1,焦半距为c=2,
所以其虚半轴长,
又其焦点在x轴上,所以双曲线C的标准方程为.
(2)设A、B的坐标分别为、,则
两式相减,得,
因为M(2,1)为AB的中点,所以,
所以,即.
故AB所在直线l的方程为,即.
(3)由已知,得,即,
所以,当且仅当 三点共线时取等号.
因为,
所以,
故的最小值为.
知识点
扫码查看完整答案与解析