热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

22.已知函数,在点处的切线方程为

(I)求函数的解析式;

(II)若对于区间上任意两个自变量的值,都有,求实数的最小值;

(III)若过点,可作曲线的三条切线,求实数的取值范围.

正确答案

(I)   ,根据题意,得    

        即解得 

(II)令,解得

        时,

        则对于区间[-2,2]上任意两个自变量的值,都有  

        所以所以的最小值为4.

(Ⅲ)设切点为,   

        切线的斜率为    即

         因为过点,可作曲线的三条切线,

         所以方程有三个不同的实数解 ,

         即函数有三个不同的零点,

         则

       

            即,∴

解析

解析已在路上飞奔,马上就到!

知识点

函数解析式的求解及常用方法导数的几何意义利用导数研究函数的单调性利用导数求函数的极值
1
题型:简答题
|
简答题 · 12 分

22.函数处取得极值,且的图象在

的切线平行于直线

(I)求函数解要式和极值;

(II)对任意,求证

正确答案

解:(I)由

(II)

由(I)知上的最大,最小值分别为

解析

解析已在路上飞奔,马上就到!

知识点

导数的几何意义利用导数研究函数的单调性利用导数求函数的极值利用导数证明不等式
1
题型:简答题
|
简答题 · 13 分

17. 已知,函数

(I)当时,求函数在点(1,)的切线方程;

(II)求函数的极值;

(III)若在区间上至少存在一个实数,使成立,求正实数的取值范围。

正确答案

求导得,

(I)当时,

所以在点(1,)的切线方程是

(II)令得:

(1)       当

的极大值是;极小值是

(2)当1即

在(-1,0)上递增,在(0,1)上递减,

所以的极大值为,无极小值。

(III)设

求导,得

因为,所以

在区间上为增函数,则

依题意,只需,即

,解得(舍去)。

所以正实数的取值范围是

解析

解析已在路上飞奔,马上就到!

知识点

导数的几何意义利用导数研究函数的单调性利用导数求函数的极值利用导数求参数的取值范围
1
题型:简答题
|
简答题 · 14 分

21.已知函数

(1)求函数的极值点;

(2)若上为单调函数,求的取值范围;

(3)设,若在上至少存在一个,使得成立,求的取值范围.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

利用导数研究函数的单调性利用导数求函数的极值利用导数求参数的取值范围
1
题型: 单选题
|
单选题 · 5 分

12.已知函数的图像如图,且,则有(    )

A

B

C

D

正确答案

B

解析

解析已在路上飞奔,马上就到!

知识点

函数的图象与图象变化利用导数研究函数的单调性利用导数求函数的极值
下一知识点 : 利用导数求函数的最值
百度题库 > 高考 > 文科数学 > 利用导数求函数的极值

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题