- 古典概型与几何概型
- 共333题
某大型客机承担相距3000公里的甲、乙两地间的客运任务,客机飞行成本由燃料费用和其它费用组成,已知该客机每小时的燃料费用(元)与其飞行速度的平方成正比(比例系数为0.05),其它费用为每小时32000元,且该客机的最大飞行速度为1500公里/小时,在客机全程都是匀速行驶的(假设)条件下。
(1)请将从甲地到乙地的飞行成本(元)表示为飞行速度
(公里/小时)的函数;
(2)要使从甲地到乙地的飞行成本最少,该客机应以多大的速度飞行?
正确答案
见解析
解析
(1)由题意,每小时的燃料费用为(
),
从甲地到乙地所用的时间为小时,………(4分)
则从甲地到乙地的飞行成本,(
)
即,(
)。 ………(7分)
(2)由(1),………(10分)
当且仅当,即
时取等号。 ………(13分)
故客机应以800公里/小时的速度飞行时,能使飞行成本最少,………(14分)
知识点
在区间上随机取
一个实数x,则x使不等式
成立的概率为____.
正确答案
答案:
解析
略
知识点
8.函数f(x)=ln(x2+1)的图象大致是( )
正确答案
解析
∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,
∴函数的图象应在x轴的上方,又f(0)=ln(0+1)=ln1=0,∴图象过原点,
综上只有A符合.
故选:A
知识点
7. 在区间内随机取出两个数,则这两个数的平方和也在区间
内的概率是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
10. 在长为12cm的线段AB上任取一点C,现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm的概率为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
14.设不等式组 ,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是__________。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
12.若在内任取一个实数
,则使
与圆
无公共点的概率为( ).
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
6. 在区间内任取两个实数
,求事件“
恒成立”的概率是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
10.在区间上随机取一个数
,
的值介于0到
之间的概率为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
16.给出以下四个结论:
①若实数,
②若将函数的图像向右平移
个单位后变为偶函数,则
的最小值是
;
③曲线与直线y=k(x一2) +4有两个交点时,实数k的取值范围是
;
④已知命题p:抛物线y= 2x2的准线方程为y= -;命题q:若函数
为偶函数, 则
关于
对称.则
为真命题.
其中正确结论的序号是:_____________.(把所有正确结论的序号都填上).
正确答案
(2)(3)(4)
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析