- 几何证明选讲
- 共247题
28.如图,在Rt△ABC中,AB=BC.以AB为直径的⊙O交AC于点D,过D作DEBC,垂足为E,连接AE交⊙O于点F.求证:BECE=EFEA.
正确答案
见解析
解析
证明:连接BD.因为AB为直径,所以BD⊥AC.
因为AB=BC,所以AD=DC.
因为DEBC,ABBC,所以DE∥AB,
所以CE=EB.
因为AB是直径,ABBC,所以BC是圆O的切线,
所以BE2=EFEA,即BECE=EFEA.
考查方向
解题思路
本题考查三角函数与解三角形,解题步骤如下:
连接BD,由已知得∠BDA=90°,∠BDC=90°,DE2=BE•CE,由此利用切割线定理能证明BE•CE=EF
•BA.
易错点
切割线定理不会应用
知识点
选修4—1:几何证明选讲
如图6,圆O的直径,P是AB延长线上一点,BP
=2 ,割线PCD交
圆O于点C,D,过点P作AP的垂线,交直线AC于点E,交直线AD于点F.
28. 当时,求
的度数;
29.求的值.
正确答案
(1);
解析
解:(Ⅰ) 连结BC,∵AB是圆O的直径 ∴则,
又,
,
∵;
考查方向
解题思路
找不到与
之间的关系;
易错点
不会使用第(1)问的结论推导第(2)问;
正确答案
(2)24;
解析
(Ⅱ)由(Ⅰ)知,
∴D、C、E、F四点共圆,
∴,
∵PC、PA都是圆O的割线,∴,
∴=24.
考查方向
解题思路
无法发现D、C、E、F四点共圆导致不能使用割线定理。
易错点
不会使用第(1)问的结论推导第(2)问;
选修4-1: 几何证明选讲.
如图所示,已知与⊙
相切,
为切点,过点
的割线交圆于
两点,弦
,
相交于点
,
为
上一点,且
.
27.求证:;
28.若,求
的长.
正确答案
见解析
解析
∵,
∴
∽
,∴
,又∵
,∴
, ∴
,
,∴
∽
, ∴
, ∴
,又∵
,∴
.
考查方向
解题思路
先证明,再证
,可证得
易错点
找不准三角形相似或全等的条件
正确答案
PA=
解析
∵,
∴
,∵
∴
由27题可知:,解得
.∴
. ∵
是⊙
的切线,∴
,∴
,解得
.
考查方向
解题思路
先综合题中条件及27中结论,解出EP=,BP=
,再由切割线定理,解得PA=
易错点
找不准三角形相似或全等的条件
如图,A、B是圆O上的两点,且AB的长度小于圆O的直径,
直线与AB垂于点D且与圆O相切于点C.若
27. 求证:为
的角平分线;
28.求圆的直径的长度。
正确答案
(1)略;
解析
(I)如图22-1,由切割线定理得
=
,
为
的角平分线
考查方向
解题思路
先根据切割线定理求出,然后求出
,后即可得到答案;
易错点
不会根据切割线定理求解;
正确答案
(2)4
解析
(2):如图22-2连结并延长交圆
于点
,连结
,
设延长线上一点为
,则
AE为圆O直径,
直线
与圆O相切于点C.
,
(等角的余角相等)
(相等的圆周角所对的弦相等)
圆
的直径为4
考查方向
解题思路
先证明,后根据勾股定理即可求得答案。
易错点
不会做辅助线导致无法求出正确答案。
10.如图,在中,
,
,若以
为直径的圆交
于点
,则阴影部分的面积是__________.
正确答案
1
解析
解析已在路上飞奔,马上就到!
知识点
22.如图,AB为圆O的直径,BE为圆O的切线,点C为圆O上不同于A、B的一点,AD为∠BAC的平分线,且分别与BC交于H,与圆O交于D,与BE交于E,连结BD、CD.
(Ⅰ)求证:BD平分∠CBE;
(Ⅱ)求证:.
正确答案
见解析
解析
证明:
(I)由弦切角定理得到∠DBE=∠DAB,又∠DBC=∠DAC,∠DAB=∠DAC,所以∠DBE=∠DBC,即BD平分∠CBE.
(Ⅱ)由(I)可知BE=BH,所以,因为∠DAB=∠DAC,∠ACB=∠ABE,所以△AHC∽△AEB,
所以,即
,即
.
考查方向
解题思路
利用弦切角定理找出与其相等的角,并进行相等角间转化;利用相似三角形的判定定理判定△AHC∽△AEB;利用相似三角形对应边成比例,证明有关问题.
易错点
辅助线的作法,相似条件找不准
知识点
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,则BC的长为 。
正确答案
解析
略
知识点
选修41:几何证明选讲
如图14,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:
(1)BE=EC;
(2)AD·DE=2PB2.
正确答案
(1)连接AB,AC.由题设知PA=PD,
故∠PAD=∠PDA.
因为∠PDA=∠DAC+∠DCA,
∠PAD=∠BAD+∠PAB,
∠DCA=∠PAB,
所以∠DAC=∠BAD,从而BE=EC.
因此BE=EC.
(2)由切割线定理得PA2=PB·PC.
因为PA=PD=DC,所以DC=2PB,BD=PB.
由相交弦定理得AD·DE=BD·DC,
所以AD·DE=2PB2.
解析
(1)连接AB,AC.由题设知PA=PD,
故∠PAD=∠PDA.
因为∠PDA=∠DAC+∠DCA,
∠PAD=∠BAD+∠PAB,
∠DCA=∠PAB,
所以∠DAC=∠BAD,从而BE=EC.
因此BE=EC.
(2)由切割线定理得PA2=PB·PC.
因为PA=PD=DC,所以DC=2PB,BD=PB.
由相交弦定理得AD·DE=BD·DC,
所以AD·DE=2PB2.
知识点
22.选修4-1:几何证明选讲
如图,是圆
的直径,
是弦,
的平分线
交圆
于点
,
,交
的延长线于点
,
交
于点
。
(Ⅰ)求证:是圆
的切线;
(Ⅱ)若,求
的值.
正确答案
见解析.
解析
试题分析:本题属于平面几何中的基本问题,题目的难度是容易题。
(Ⅰ)连接,可得
,∴
又,∴
,又
为半径,∴
是圆
的切线
(Ⅱ)过作
于点
,连接
,则有
,
设,则
,∴
由可得
,又由
,
可得
考查方向
本题考查了平面几何的知识,主要涉及直线与圆的位置关系,三角形相似的考查.
解题思路
本题考查平面几何的知识,解题步骤如下:利用圆的相关定理证明;利用切割线定理和相交弦定理证明。
易错点
相关的定理容易混用。
知识点
22.选修4—1:几何证明选讲。
如图,
于点
,以
为直径的圆
与
交于点
.
(Ⅰ)求证:;
(Ⅱ)若,点
在线段
上移动,
,
与
相交于点
,求
的最大值.
正确答案
解,(Ⅰ) 在中,
,
于点
,
所以,
因为是圆
的切线,
由切割线定理得.
所以.
(Ⅱ)因为,所以
.
因为线段的长为定值,即需求解线段
长度的最小值.
弦中点到圆心的距离最短,此时为
的中点,点
与点
或
重合.
因此.
解析
(Ⅰ) 在中,
,
于点
,
所以,
因为是圆
的切线,
由切割线定理得.
所以.
(Ⅱ)因为,所以
.
因为线段的长为定值,即需求解线段
长度的最小值.
弦中点到圆心的距离最短,此时为
的中点,点
与点
或
重合.
因此. 23. (Ⅰ)曲线
:
的直角坐标方程为
.
曲线与
轴交点为
.
曲线:
的直角坐标方程为
.
曲线与
轴交点为
.
由,曲线
与曲线
有一个公共点在x轴上,知
.
(Ⅱ)当时, 曲线
:
为圆
.
圆心到直线的距离
.
所以两点的距离
.
考查方向
解题思路
易错点
第一问未能准确读图,找到线段关系;第二问不能充分利用OF⊥NF得到,则无法继续求解。
知识点
扫码查看完整答案与解析