- 圆内接四边形的性质与判定定理
- 共255题
如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度数;
(2)求证:AE是⊙O的切线;
(3)当BC=4时,求劣弧AC的长.
正确答案
解:(1)∵∠ABC与∠D都是劣弧AC所对的圆周角,∠D=60°,
∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直径,∴∠ACB=90°.
可得∠BAC=90°-∠ABC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,得OA⊥AE,
又∵OA是⊙O的半径,∴AE是⊙O的切线;
(3)如图,连接OC,
∵∠ABC=60°,OB=OC,
∴△BOC是等边三角形,得∠BOC=60°,⊙O的半径R=OB=AB=4,
由此得到∠AOC=180°-∠BOC=120°,
因此,劣弧AC的长等于=
=
.
解析
解:(1)∵∠ABC与∠D都是劣弧AC所对的圆周角,∠D=60°,
∴∠ABC=∠D=60°;
(2)∵AB是⊙O的直径,∴∠ACB=90°.
可得∠BAC=90°-∠ABC=30°,
∴∠BAE=∠BAC+∠EAC=30°+60°=90°,
即BA⊥AE,得OA⊥AE,
又∵OA是⊙O的半径,∴AE是⊙O的切线;
(3)如图,连接OC,
∵∠ABC=60°,OB=OC,
∴△BOC是等边三角形,得∠BOC=60°,⊙O的半径R=OB=AB=4,
由此得到∠AOC=180°-∠BOC=120°,
因此,劣弧AC的长等于=
=
.
(几何证明选讲选做题)如图,PT是圆O的切线,PAB是圆O的割线,若PT=2,PA=1,∠P=60o,则圆O的半径r=______.
正确答案
解析
解:连接AT
在△APT中,P=60°,PT=2,PA=1,AT=
∴∠TAP=90°,
∴∠BAT=90°,
∴BT是圆的直径,
∵PT是圆O的切线,PAB是圆O的割线,
∴PT2=PA•PB,
∴△PAT∽△PTB
∴
∴BT=2
∴圆的半径是,
故答案为:
如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.
求证:(1)AC是⊙D的切线;(2)AB+EB=AC.
正确答案
解析
证明:(1)过点D作DF⊥AC于F;(1分)
∵AB为⊙D的切线,则∠B=90°,且AD平分∠BAC,
∴BD=DF,(3分)
∴AC为⊙D的切线.(4分)
(2)在△BDE和△FDC中;
∵BD=DF,DE=DC,
∴△BDE≌△DCF,(6分)
∴EB=FC.(8分)
∵AB=AF,
∴AB+EB=AF+FC,
即AB+EB=AC.(10分)
如图,AB为圆O的直径,E为AB 的延长线上一点,过E作圆O的切线,切点为C,过A作直线EC的垂线,垂足为D.若AB=4.CE=2
,则 AD=______.
正确答案
3
解析
解:连接OC,则OC⊥DE,
∵AD⊥DE,
∴AD∥OC,
∴
由切割线定理可得CE2=BE•AE,
∴12=BE•(BE+4),
∴BE=2,
∴OE=4,
∴,
∴AD=3
故答案为:3.
如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PB的长为( )cm.
正确答案
解析
解:连接OC,∵CP与⊙O相切于点C,∴OC⊥CP.
∵OC=3,∠CPA=30°,∴OP==
=6.
∴PB=OP-OB=6-3=3.
故选D.
如图,在等腰△ABC中,AC=AB,以AB为直径的⊙O交BC于点E,过点E作⊙O的切线交AC于点D,交AB的延长线于点P.问:PD与AC是否互相垂直?请说明理由.
正确答案
解析
解:PD与AC互相垂直.
理由如下:
连接OE,则OE⊥PD;
∵AC=AB,OE=OB,
∴∠OEB=∠B=∠C,
∴OE∥AC,
∴PD与AC互相垂直.
如图,点P是∠AOB平分线上一点,PC⊥OA,垂足为C,OB与以P为圆心、PC为半径的圆相切吗?为什么?
正确答案
解析
解:OB与以P为圆心、PC为半径的圆相切.
理由如下:过P作PD⊥OB,交于D,
由于点P是∠AOB平分线上一点,PC⊥OA,
则PD=PC,
故由圆的切线的定义可得,
OB与以P为圆心、PC为半径的圆相切.
如图,P是半圆O的直径BC延长线上一点,PT切半圆于点T,TH⊥BC于H,若PT=1,PB+PC=2a,则PH=( )
正确答案
解析
解:如图,连接OT.
∵PT2=PC•PB,PT=1且PB+PC=2a
∴BC=PB-PC==
∴OT=OC=,可得OP=
=a.
又∵∠TPH=∠OPT,∠PTO=∠PHT=90°
∴△TPH∽△OPT,可得,PH=
=
.
故选:B
如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=______度.
正确答案
115
解析
解:∵OB、OC是∠ABC、∠ACB的角平分线,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=
(50°+80°)=65°,
∴∠BOC=180°-65°=115°.
故答案为:115°.
如图,AB为圆O的直径,BC与圆O相切于点B,D为圆O上的一点,AD∥OC,连接CD.
求证:CD为圆O的切线.
正确答案
证明:连接OD,
∵AD∥OC,
∴∠A=∠COB,∠ADO=∠COD,
∵OA=OD,
∴∠A=∠ADO,
∴∠COB=∠COD,
在△COB和△COD中,OB=OD,∠COB=∠COD,OC=OC,
∴△COB≌△COD(SAS),
∴∠ODC=∠OBC,
∵BC与⊙O相切于点B,
∴OB⊥BC,
∴∠OBC=90°,
∴∠ODC=90°,
即OD⊥CD,
∴CD是⊙O的切线.
解析
证明:连接OD,
∵AD∥OC,
∴∠A=∠COB,∠ADO=∠COD,
∵OA=OD,
∴∠A=∠ADO,
∴∠COB=∠COD,
在△COB和△COD中,OB=OD,∠COB=∠COD,OC=OC,
∴△COB≌△COD(SAS),
∴∠ODC=∠OBC,
∵BC与⊙O相切于点B,
∴OB⊥BC,
∴∠OBC=90°,
∴∠ODC=90°,
即OD⊥CD,
∴CD是⊙O的切线.
扫码查看完整答案与解析