- 平面向量
- 共1072题
在正三角形ABC中,D是BC上的点,AB=3,BD =1,则________
正确答案
6
解析
知识点
已知是边长为2的正方形,
、
分别是
、
的中点,则
正确答案
解析
略
知识点
△ABC内接于以O为圆心半径为1的圆,且,则△ABC的面积S= _________ 。
正确答案
解析
如图,,则
,易得OA⊥OB,
且,
所以。
知识点
如图,焦距为2的椭圆D的两个顶点分别为和
,且
与
共线。
(1)求椭圆D的标准方程;
(2)过点且斜率为
的直线l与椭圆D有两个不同的交点P和Q ,若以PQ为直径的圆经过原点O,求实数m的值。
正确答案
(1)
(2)
解析
(1)设椭圆E的标准方程为,由已知得
,∴
,∵
与
共线,∴
,又
(3分)
∴ ,∴ 椭圆E的标准方程为
(5分)
(2)设,把直线方程
代入椭圆方程
,
消去y,得,,
∴,
(7分)
,∴
(8分)
∵以PQ为直径的圆经过原点O ∴,即
(9分)
又
由得
,∴
(11分)
∴(12分)
知识点
若直线与圆
交于
、
两点,且
,其中O为原点,则实数
的值为
正确答案
解析
由知,∠
,∴圆心到直线距离为
,∴
的值为2或-2。
知识点
设F为抛物线E: 的焦点,A、B、C为该抛物线上三点,已知
且
(1)求抛物线方程;
(2)设动直线l与抛物线E相切于点P,与直线相交于点Q。证明以PQ为直径的圆恒过y轴上某定点。
正确答案
见解析
解析
解析:(1)由知
又
所以
所以所求抛物线方程为
(2)设点P(,
),
≠0. ∵Y=
,
,
切线方程:y-=
,即y=
由 ∴Q(
,-1)
设M(0,)∴
,∵
·
=0
-
-
+
+
=0,又
,∴联立解得
=1
故以PQ为直径的圆过y轴上的定点M(0,1)
知识点
已知双曲线,A,C分别是双曲线虚轴的上、下端点,B,F分别是双曲线的左顶点和左焦点,若双曲线的离心率为2,则
与
夹角的余弦值为 。
正确答案
解析
由题意可得由题意得A(0,b),C(0,﹣b),B(﹣a,0),F(﹣c,0),=2。
∴=(a,b),
=(﹣c,b), 设
与
的夹角为θ,则cosθ=
=
=
=
=
知识点
已知椭圆的中心在坐标原点,焦点在
轴上,它的一个顶点恰好是抛物线
的焦点,离心率为
。
(1)求椭圆的标准方程;
(2)过椭圆的右焦点
作直线
交椭圆
于
两点,交
轴于
点,若
,
,求
的值。
正确答案
(1)(2)-10
解析
(1)解:设椭圆C的方程为 (a>
>
),
抛物线方程化为,其焦点为
, . ……………2分
则椭圆C的一个顶点为,即
;由
,∴
,
所以椭圆C的标准方程为 ……………5分
(2)证明:易求出椭圆C的右焦点 ……………6分
设,显然直线
的斜率存在,
设直线的方程为
,代入方程
并整理,
得 …………… 7分
∴,
……………8分
又,,
,
,
,
而 ,
,
即,
∴,
, ……………10分
所以 ……………12分
知识点
椭圆的离心率为
,右焦点到直线
的距离为
.
(1)求椭圆的方程;
(2)过作直线交椭圆于
两点,交
轴于
点,满足
,求直线的方程.
正确答案
(1)
(2)y=x-1或y=-x-1
解析
(1)设右焦点为,则
,
,
或
(舍去)(2分)
又离心率,
,
,
,
故椭圆方程为. (4分)
(2)设,
,
,因为
,所以
,
① (6分)
易知当直线的斜率不存在或斜率为0时,①不成立,
于是设的方程为,联立
消
得
② (8分)
因为,所以直线与椭圆相交,
于是③,
④,
由①③得,,
代入④整理得
,
,
所以直线的方程是或
. (12分)
知识点
如图,非零向量,C为重足,设
,则
的值为
正确答案
解析
略
知识点
已知正方形的边长为2,
是正方形
四边上的动点,则
的最大值为
正确答案
4
解析
略
知识点
已知圆锥曲线的两个焦点坐标是
,且离心率为
;
(1)求曲线的方程;
(2)设曲线表示曲线
的
轴左边部分,若直线
与曲线
相交于
两点,求
的取值范围;
(3)在条件(2)下,如果,且曲线
上存在点
,使
,求
的值。
正确答案
(1)
(2)
(3)m=4
解析
(1)由知,曲线
是以
为焦点的双曲线,且
,
故双曲线的方程是
,
(2)设,联立方程组:
,
从而有:为所求。
(3)因为,
整理得或
,
注意到,所以
,故直线
的方程为
。
设,由已知
,
又,所以
。
在曲线
上,得
,
但当时,所得的点在双曲线的右支上,不合题意,
所以为所求。
知识点
21.已知椭圆的离心率为
,过顶点
的直线
与椭圆
相交于两点
。
(1)求椭圆的方程;
(2)若点在椭圆上且满足
,求直线
的斜率
的值。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
14.设M是△ABC的重心,若A=,
,则
的最小值为( ).
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
8.如图,在平行四边形中,
,垂足为
,且
,则
=( ).
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析