- 平面向量的线性运算
- 共263题
+
+
= .
正确答案
试题分析:.
已知直线ax+by+c=0与圆O:x2+y2=1相交于A、B两点,且|AB|=,则
=
正确答案
略
在△OAB的边OA、OB上分别取点M、N,使||∶|
|=1∶3,|
|∶|
|=1∶4,设线段AN与BM交于点P,记
=
,
=
,用
,
表示向量
。
正确答案
:∵ B、P、M共线∴ 记=s
∴ ①
同理,记∴
=
②∵
,
不共线
∴ 由①②得解之得:
∴
说明:从点共线转化为向量共线,进而引入参数(如s,t)是常用技巧之一。平面向量基本定理是向量重要定理之一,利用该定理唯一性的性质得到关于s,t的方程。
在平行四边形中,
,
,
为
中点,若
,则
的长为
.
正确答案
6
试题分析:根据题意可得:,则
,化简得:
,解得:
.
(本小题满分12分)已知向量,
,设
与
的夹角为
.
(Ⅰ)求;
(Ⅱ)若,求
的值.
正确答案
(Ⅰ) (Ⅱ)
试题分析:(Ⅰ)利用向量数量积公式求,在代入公式
求解。(Ⅱ)先求
和
的坐标,因为
,所以
,再利用数量积公式求
。
试题解析:(Ⅰ),
所以,
因此
(Ⅱ)
由得
解得:
设O点在内部,且有
,则
的面积与
的面积的比为 .
正确答案
3
略
梯形ABCD中,AB∥CD,AB=2CD,M、N分别是CD和AB的中点,若=
,
=
,
试用、
表示
和
,则
=_______ _ ,
=___ __.
正确答案
a + b
a-b
解:因为梯形ABCD中,AB∥CD,AB=2CD,M、N分别是CD和AB的中点,若=
,
=
,那么利用向量共线,以及加减法运算可知
=
a + b,
=
a-b
已知=(2,0),
,
的夹角为60°,则
.
正确答案
试题分析:.
在△ABC中,角A、B、C的对边分别为a、b、c,若
(Ⅰ)求证:A=B;
(Ⅱ)求边长c的值;
(Ⅲ)若求△ABC的面积.
正确答案
解:(Ⅰ)∵ ∴bccosA=accosB,即bcosA=acosB.
由正弦定理得 sinBcosA=sinAcosB, ∴sin(A-B)=0.
∵-π<A-B<π, ∴A-B=0,∴A=B. --------------------(4分)
(Ⅱ)∵∴bccosA=1. 由余弦定理得
,即b2+c2-a2=2.
∵由(Ⅰ)得a=b,∴c2=2,∴. --------------------(8分)
(Ⅲ)∵=,∴
即c2+b2+2=6,
∴c2+b2=4. ∵c2=2, ∴b2=2,即b=
. ∴△ABC为正三角形.
∴ ----------------------(12分)
略
已知△ABC中,点A、B、C的坐标依次是A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,则的坐标是:_______.
正确答案
(-1,2)
直线BC为3x-6y+3=0
AD的法向量为
,A(2,-1)
直线AD为6x+3y-9=0
扫码查看完整答案与解析