热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

19.如图,在四棱锥P-ABCD的底面是边长为2的正方形,PD⊥平面ABCD, E、F分别是PB、AD的中点,PD=2.

(I)求证:BC⊥PC;

(II)求证:EF//平面PDC;

(III)求三棱锥B—AEF的体积.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

棱柱、棱锥、棱台的体积直线与平面平行的判定与性质直线与直线垂直的判定与性质直线与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

19.如图,在三棱锥P—ABC中,PA=2,AB=AC=4,点D、E、F分别为BC、AB、AC的中点。

(I)求证:平面PAD;

(II)求点A到平面PEF的距离;

(III)求二面角E—PF—A的正切值。

正确答案

: 解法一:

(I)

AD为PD在平面ABC内的射影。

点E、F分别为AB、AC的中点,

中,由于AB=AC,故

平面PAD

(II)设EF与AD相交于点G,连接PG。

平面PAD,dm PAD,交线为PG,

过A做AO平面PEF,则O在PG上,

所以线段AO的长为点A到平面PEF的距离

即点A到平面PEF的距离为

说 明:该问还可以用等体积转化法求解,请根据解答给分。

(III)

平面PAC。

过A做,垂足为H,连接EH。

所以为二面角E—PF—A的一个平面角。

即二面角E—PF—A的正切值为

解法二:

   AB、AC、AP两两垂直,建立如图所示空间直角坐标系,

则A(0,0,0),E(2,0,0),D(2,2,0),F(0,2,0),P(0,0,2)

(I)

平面PAD

(II)为平面PEF的一个法向量,

故点A到平面PEF的距离为:

所以点A到平面PEF的距离为

(III)依题意为平面PAF的一个法向量,

设二面角E—PF—A的大小为(由图知为锐角)

则,

所以

即二面角E—PF—A的正切值为

解析

解析已在路上飞奔,马上就到!

知识点

直线与平面垂直的判定与性质线面角和二面角的求法
1
题型: 单选题
|
单选题 · 5 分

4. 已知平面,则“”是“”成立的(    )

A充要条件

B充分不必要条件

C必要不充分条件

D既不充分也不必要条件

正确答案

A

解析

解析已在路上飞奔,马上就到!

知识点

充要条件的判定直线与直线垂直的判定与性质直线与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

19. 如图,在三棱柱中,面为矩形,的中点,交于点

(1)证明:

(2)若,求直线与面成角的余弦值.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线与直线垂直的判定与性质直线与平面垂直的判定与性质线面角和二面角的求法
1
题型:填空题
|
填空题 · 5 分

15. 如图,直线,垂足为,直线是平面的一条斜线,斜足为,其中,过点的动直线交平面于点,则下列说法正确的是_______.

①若,则动点B的轨迹是一个圆;

②若,则动点B的轨迹是一条直线;

③若,则动点B的轨迹是抛物线;

,则动点B的轨迹是椭圆;

,则动点B的轨迹是双曲线;

正确答案

②③

解析

解析已在路上飞奔,马上就到!

知识点

命题的真假判断与应用直线与平面垂直的判定与性质用其它方法求轨迹方程
1
题型:简答题
|
简答题 · 14 分

19.如图,四棱锥中,底面为矩形,平面的中点.

(I)证明:平面

(II)设,三棱锥的体积,求到平面的距离.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

棱柱、棱锥、棱台的体积直线与平面平行的判定与性质直线与平面垂直的判定与性质
1
题型:填空题
|
填空题 · 5 分

15.设为不重合的两个平面,给出下列命题:

①若内的两条相交直线分别平行于内的两条直线,则

②若外的一条直线内的一条直线平行,则

③设,若内有一条直线垂直于,则

④直线的充要条件是内的两条直线垂直.

其中所有的真命题的序号是__________ .

正确答案

①②

解析

解析已在路上飞奔,马上就到!

知识点

命题的真假判断与应用直线与平面平行的判定与性质平面与平面平行的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

17.如图,为圆的直径,点在圆上,,矩形所在的平面和圆所在的平面互相垂直,且

(1)求证:;

(2)设的中点为,求证:;

(3)设平面将几何体分成的两个椎体的体积分别为

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

棱柱、棱锥、棱台的体积直线与平面平行的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

17.已知在四棱锥P - ABCD中,底面 ABCD是矩形,平面ABCD,AB= 2,PA=AD=1,E,F分别是AB、PD 的中点.

(1)求证:AF平面PDC;

(2)求三棱锥B-PEC的体积;

(3)求证:AF//平面PEC

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

棱柱、棱锥、棱台的体积直线与平面平行的判定与性质直线与平面垂直的判定与性质
1
题型:填空题
|
填空题 · 4 分

7.如图,已知边长为6的正方形所在平面外的一点,  平面,连接,则与平面所 成角的大小(   )(用反三角函数表示)

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线与平面垂直的判定与性质线面角和二面角的求法
下一知识点 : 平面与平面垂直的判定与性质
百度题库 > 高考 > 文科数学 > 直线与平面垂直的判定与性质

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题