- 函数性质的综合应用
- 共80题
15.已知函数,给出下面四个命题:
① 函数的图象一定关于某条直线对称;
② 函数在R上是周期
函数;
③ 函数的最大值为
;
④ 对任意两个不相等的实数,都有
成立.
其中所有真命题的序号是 .
正确答案
①③
解析
因为,
且,
所以函数的图象关于直线
对称,故①正确;当
时,
,当
时,
,即函数
的最大值为
,且不可能为周期函数,故②错误,③正确;因为
是函数的最大值,所以函数
在
上为减函数,则
,故④错误.
考查方向
解题思路
1)利用得到函数关于直线
对称;
2)由对称性判定其他性质.
易错点
本题易在判定函数的对称性时出现错误,易忽视“若,则函数
的图象关于
对称”的应用.
知识点
已知函数.(其中
为自然对数的底数,)
26.若曲线过点
,,求曲线
在点
处的切线方程。
27.若的两个零点为
且
,求
的值域。
28.若恒成立,试比较
与
的大小,并说明理由。
正确答案
(1);
解析
(1)当时,
,
,∴所求切线方程
,即
考查方向
解题思路
1)第一问由可得
,求出
的导数,求的切线的斜率,由点斜式方程可得切线方程;
2)第二问由零点的概念,化简函数,令
,
得到所求值域。
3)由得
,即有
,令
,求出导数,求的单调区间,可得大小。
易错点
求导函数,求极值,参数m的讨论是本题的易错点,
正确答案
(2);
解析
(2)由题意,,
。
令
又
∴在
上单调递减
∴
∴
∴的值域为
考查方向
解题思路
1)第一问由可得
,求出
的导数,求的切线的斜率,由点斜式方程可得切线方程;
2)第二问由零点的概念,化简函数,令
,
得到所求值域。
3)由得
,即有
,令
,求出导数,求的单调区间,可得大小。
易错点
求导函数,求极值,参数m的讨论是本题的易错点,
正确答案
(3)综上,当时,
;当
时,
;当
时,
。
解析
(3)由得
,即有
令,则
,令
,
∴在
上单调递增,在
上单调递减。
∴,∴
又令,则
。
令,
,又
∴在
上单调递增,在
上单调递减
又,
∴当时,
,即
∴
同理,当时,
,当
时,
。
综上,当时,
当时,
,
当时,
。
考查方向
解题思路
1)第一问由可得
,求出
的导数,求的切线的斜率,由点斜式方程可得切线方程;
2)第二问由零点的概念,化简函数,令
,
得到所求值域。
3)由得
,即有
,令
,求出导数,求的单调区间,可得大小。
易错点
求导函数,求极值,参数m的讨论是本题的易错点,
已知函数f (x)= +lnx.
25.若函数f(x)在区间[1,e]上的最小值是,求a的值;
26.当a=1时,设F(x)=f(x)+1+,求证:当x>l时,
.
正确答案
(1);
解析
(1)因 为,且
,则
①当时,
,函数
单调递增,其最小值为
,这与函数在
上的最小值是
相矛盾;
②当时,函数
在
上有
,单调递减,在
上有
,单调递增,
∴函数的最小值为
,得
.
③当时,
,函数
在
上单调递减,其最小值为
,与最小值是
相矛盾.
综上所述,的值为
.
考查方向
解题思路
(1)先对函数进行求导,再对参数进行分类讨论探讨函数的单调性从而研究其最小值及此时a的值 ;(2)通过灵活变形构造新函数的方法证明不等式。
易错点
对参数的分类讨论研究函数的最值。
正确答案
(2)当x>l时,
解析
(2)要证,即证
,
当时,
,
令,则
,
当时,
,
递增;当
时,
,
递减,
∴在
处取得唯一的极小值,即为最小值,即
,∴
,
∴在
上是增函数,∴当
时,
为增函数,
故,故
. [来源:学科网ZXXK]
令,则
∵, ∴
,∴
,即
在
上是减函数,
∴时,
,所以
,即
,
所以.
考查方向
解题思路
(1)先对函数进行求导,再对参数进行分类讨论探讨函数的单调性从而研究其最小值及此时a的值 ;(2)通过灵活变形构造新函数的方法证明不等式。
易错点
对参数的分类讨论研究函数的最值。
12. 定义在上的奇函数
在区间
上单调递减,且
,则不等式
的解集为 .
正确答案
解析
由奇函数在区间
上单调递减,所以函数
在区间
上也单调递减,且
。
(1)当即
时,不等式
可化为
,而
,所以
成立,
符合题意。
(2)当即
时,不等式
可化为
,所以
。
(3)当即
时,
①当时,不等式
可化为
,所以
。
②当时,不等式
可化为
,所以
符合题意。
③当时,不等式
可化为
,所以
与
取交集为
。
综上可知,的解集合为
。
考查方向
解题思路
1.先利用奇函数求出函数在对称的区间上的单调性;
2.根据x的范围不同分类求出x的解后取并集。
易错点
1.不会奇函数在对称的区间上单调性相同这个结论;
2.分类讨论时不全或重复。
知识点
14. 设函数的定义域为
,记
,
,若
,
,
且, 则
的取值范围是___________________.
正确答案
解析
由可以知:函数
可以取到最大值为2.由
知
,所以
又
,所以
。
考查方向
解题思路
1.先根据题中给出的符号转化出函数的最大值2;根据三角函数取最大值的解法得到
。
易错点
1.根本无法理解题中的符号是什么意思;
2.不会转化题中的条件导致无法解出正确答案。
知识点
扫码查看完整答案与解析