热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

已知定义在R上的偶函数,当时,.

25.当时,求过原点与函数图像相切的直线的方程;

26.求最大的整数,使得存在,只要,就有.

第(1)小题正确答案及相关解析

正确答案

(1)

解析

(1):当时,

记过原点与相切的直线为L,设切点坐标为

则切线L斜率为 切线方程为

又切线过(0,0),所以

,切线方程为 ,

为偶函数,图像关于y轴对称,

∴当时,设过原点与相切的直线方程为

 即

考查方向

本题主要考查导数的几何意义和利用导数研究函数的单调性等知识。意在考查考生的综合解决问题的能力和转化与化归的能力。

解题思路

先设切点后利用导数的几何意义求出切点坐标后即得切线方程;

易错点

没有给出切点导致无法入手;

第(2)小题正确答案及相关解析

正确答案

(2)4

解析

(2)因为任意,都有,故x=1时,

时,,从而,∴

时,,从而

,综上 

又整数,即,故,故x=m时,

得:, 即存在,满足

∴  ,即

,则

时,单调递减;

时,单调递增,

由此可见,方程在区间上有唯一解

且当,当

,故,此时.

下面证明:对任意恒成立,

①当时,即,等价于

,∴

②当时,即,等价于

,则上递减,在上递增,

,而

综上所述,对任意恒成立。

考查方向

本题主要考查导数的几何意义和利用导数研究函数的单调性等知识。意在考查考生的综合解决问题的能力和转化与化归的能力。

解题思路

先探求出m的值后证明。

易错点

对于题中给的信息无法处理导致没有思路。

1
题型: 单选题
|
单选题 · 5 分

6.如果一个函数在定义域中满足:①存在,且,使得;②任意,则可以是

A

B

C

D

正确答案

C

解析

直接画图A、B、C、D四个选项的图像,逐一考查图像是否符合等式与不等式条件

考查方向

考查函数图像的性质, 具体考查函数图像的凸凹性

解题思路

直接画图A、B、C、D四个选项的图像,可以直接判断

易错点

对题中的等式与不等式理解不到位,导致无法判断

知识点

函数性质的综合应用
1
题型:简答题
|
简答题 · 12 分

已知函数(常数.

时,求曲线处的切线方程;

讨论函数在区间上零点的个数(为自然对数的底数).

第(1)小题正确答案及相关解析

正确答案

解析

试题分析:本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,(1)求导,然后算出在切点处的导数值,求出切线方程;当 时,.又,∴曲线在点处的切线方程为

考查方向

本题考查了导数的几何意义和分类讨论思想,属于导数的基本问题,常考的问题有求解含参的函数单调区间,零点、极值点及恒成立问题的处理,最常用的方法是最值法和“分离参数法”。

解题思路

本题考查导数的应用,解题步骤如下:求导,然后算出在切点处的导数值,求出切线方程。

易错点

忽略函数的定义域导致出错。

第(2)小题正确答案及相关解析

正确答案

时,函数无零点;当,函数有一个零点;当时,函数有两个零点.

解析

试题分析本题属于导数应用中的基本问题,题目的难度是逐渐由易到难,要注意对参数的讨论。∵,∴.

因为,于是当时,,当时,.

所以上是增函数,在上是减函数.  所以   讨论函数的零点情况如下.

,即时,函数无零点,在上也无零点;…7分

②当,即时,函数内有唯一零点,而 ,∴内有一个零点;③当,即时,由于,    ,当时,即时,

,由单调性可知,函数 在内有唯一零点、在内有唯一零点满足,内有两个零点;当时,即时,,而且由单调性可知,无论还是内有唯一的一个零点,在内没有零点,从而内只有一个零点; 综上所述,有:当时,函数无零点;当时,函数有一个零点;当时,函数有两个零点.

考查方向

本题考查了导数的几何意义和分类讨论思想,属于导数的基本问题,常考的问题有求解含参的函数单调区间,零点、极值点及恒成立问题的处理,最常用的方法是最值法和“分离参数法”。

解题思路

本题考查导数的应用,解题步骤如下:算出定义域,对参数分类讨论分析单调性,确定最值,再由图确定零点的个数。

易错点

第二问中的易丢对a的分类讨论。

1
题型:简答题
|
简答题 · 12 分

已知函数

26.若函数上为单调增函数,求的取值范围;

27.若斜率为的直线与的图像交于两点,点为线段的中点,求证:.

第(1)小题正确答案及相关解析

正确答案

解析

()  2分

因为函数上为单调增函数,所以   在 恒成立

解得

考查方向

函数的导数及应用,函数的恒成立问题,对思维能力与逻辑运算能力有较高的要求。

解题思路

直接求导,   在 恒成立即可解a.

易错点

函数的恒成立问题,构造新函数;用导数解决函数的综合性问题

第(2)小题正确答案及相关解析

正确答案

证明略

解析

设点,不妨设,则

要证,即

即证.只需证,   即证. 只需证.设.由(1)令上是单调增函数,又, 所以.即 ,

.   所以不等式成立.

考查方向

函数的导数及应用,函数的恒成立问题,对思维能力与逻辑运算能力有较高的要求。

解题思路

设出交点坐标,用分析法证明,要证,即,只需证.引入函数,,利用导数求解。

易错点

函数的恒成立问题,构造新函数;用导数解决函数的综合性问题

1
题型:填空题
|
填空题 · 5 分

15.某房地产公司要在一块矩形宽阔地面(如图)上开发物业 ,阴影部分是不能开发的古建筑群,且要求用在一条直线上的栏栅进行隔离,古建筑群的边界为曲线的一部分,栏栅与矩形区域边界交于点.则当能开发的面积达到最大时,的长为            

正确答案

解析

根据题意,当开发面积最大时,三角形OMN的面积就最小。设直线MN与曲线相切于点T,对函数,求导得,所以,切线MN的斜率,直线MN的方程为:

 得;令 得,所以

当且仅当,解得,即三角形MON面积的最小值为,此时,

,故答案为:1.

考查方向

本题主要考查了直线的有关知识、导数的几何意义和基本不等式在求最值问题中的应用,同时还考查了考生的计算能力。

解题思路

先设切点的坐标,并运用导数得出切线方程,再求出直线的横纵截距,最后运用基本不等式求出最值。

易错点

本题易在利用基本不等式求最值或用导研究函数最值时发生错误 。

知识点

函数的最值及其几何意义函数性质的综合应用
1
题型:简答题
|
简答题 · 12 分

设函数.

26.若的极值点,求实数a的值;

27.若函数只有一个零点,求实数a的取值范围.

第(1)小题正确答案及相关解析

正确答案

(1)

解析

(Ⅰ)

x = ef(x)的极值点,得,解得 或

经检验,符合题意,所以

考查方向

本题只要考查函数的极值,函数的单调性等知识,意在考查考生转化与化归的能力,构造函数的能力。

解题思路

求导后根据是极值点带入导数得到,后解得a的值;

易错点

不会转化的极值点这一条件,导致求导后不会转化导数的式子;不会判断函数的单调性,不知道函数单调性分类标准的确定。

第(2)小题正确答案及相关解析

正确答案

(2)

解析

(Ⅱ)由已知得方程只有一个根,

即曲线f(x)与直线只有一个公共点。

易知,设

①当时,易知函数f(x)在上是单调递增的,满足题意;

②当时,易知h(x)是单调递增的,又

时,>0,∴f(x)在上单调递增,

同理f(x)在上单调递减,在上单调递增,

又极大值,所以曲线f(x) 满足题意;

③当a>1时,

,即,得

可得f(x) 在上单调递增,上单调递减,在上单调递增,

,若要曲线f(x) 满足题意,只需,即

所以,由,且在[1,+∞)上单调递增,

,得,因为在[1,+∞)上单调递增,

所以

综上知,

考查方向

本题只要考查函数的极值,函数的单调性等知识,意在考查考生转化与化归的能力,构造函数的能力。

解题思路

先将题意转化为求函数的单调性问题,后分类讨论函数的单调性后即可得到答案。

易错点

不会转化的极值点这一条件,导致求导后不会转化导数的式子;不会判断函数的单调性,不知道函数单调性分类标准的确定。

1
题型: 单选题
|
单选题 · 5 分

11.已知函数处取得极大值,在处取得极小值,满足,则的取值范围是(  )

A(0,2)

B(1,3)

C[0,3]

D[1,3]

正确答案

B

解析

由题意可知,,是极值点, 所以,是导函数的两个零点, 根据根的分布, a.b应满足的条件不等

考查方向

本题考查的是函数的极值问题。以及函数的零点的分布问题。线性规划的相关知识;综合性很强。

解题思路

先求导,利用简图,将根的分布条件转化成a,b的限制条件上,再将问题转成线性规划问题,

易错点

不能控制导函数的两个零点的分布,在处理结论与题设的关系上找不到解题突破口。

知识点

函数性质的综合应用导数的运算
1
题型:简答题
|
简答题 · 16 分

已知函数.

25.若曲线在点(2,f(2))处的切线的斜率小于0,求的单调区间;

26.对任意的,恒有,求正数的取值范围。

第(1)小题正确答案及相关解析

正确答案

递增区间为(0,1),(2a+1,+),单调递减区间为(1,2a+1)

解析

若曲线在点(2,f(2))处的切线的斜率小于0,

,即有,∴2a+1>2>1,…………………2

则由f(x)>0得0<x<1或x>2a+1;由f(x)<0得1<x<2a+1。

f(x)的单调递增区间为(0,1),(2a+1,+),单调递减区间为(1,2a+1)。……5

考查方向

本题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值等情况. 对考生的逻辑推理与运算求解能力有较高要求

解题思路

通过求导,将单调递减区间转成导数正负问题;

易错点

存在性与恒成立的区别

第(2)小题正确答案及相关解析

正确答案

解析

,∴(2a+1)[4,6],由(Ⅰ)知f(x)在[1,2]上为减函数。

不妨设1≤x1<x2≤2,则f(x1)>f(x2),

∴原不等式即为:f(x1)-f(x2)<

,对任意的x1x2[1,2]恒成立。……7

g(x)=f(x)-,∴对任意的x1x2[1,2]有g(x1)<g(x2)恒成立,

g(x)=f(x)-在闭区间[1,2]上为增函数,

对任意的x[1,2]恒成立。……………………9

化简得

≥0,其中

[1,2],,只需

对任意x[1,2]恒成立,

x[1,2],恒成立,

在闭区间[1,2]上为减函数,

。由,解得。……12

考查方向

本题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值等情况. 对考生的逻辑推理与运算求解能力有较高要求

解题思路

本题主要考查函数与导数的综合应用能力,具体涉及到用导数来描述原函数的单调性、极值等情况. 本题对考生的逻辑推理与运算求解能力有较高要求.

易错点

构造函数,及讨论问题的全面性。处理逻辑推理与运算求解能力方面易出错。思路不清晰,步骤不严谨

1
题型:填空题
|
填空题 · 6 分

14.若函数的图象关于直线对称,则   ▲    

    ▲    的最小值为     ▲    

正确答案

4,0,-16

解析

f(x-1)是偶函数,所以有f(x-1)= f(-x-1);所以有; 将两边分别化简,利用恒成立的条件,求得a=4,b=0;所以f(x)=, f(x)的最小值与f(x-1)的最小值相同,f(x-1)==(,当=5时,有最小值-16.

考查方向

考察函数的对称性以导出的应用

解题思路

根据题意,图像关于直线x=-1对称,所以将函数f(x)的图像向右平移一个单位,得到偶函数图像,再利用偶函数的性质,求出a与b,然后利用导数求函数的最小值

易错点

在对称性应用上易出错

知识点

函数性质的综合应用函数图象的应用
1
题型: 单选题
|
单选题 · 5 分

若定义在R上的减函数,对任意的,不等式成立,则当时,的取值范围是(    )

A 

B

C

D

正确答案

C

解析

上单调递减结合得出,即再结合得出可行域为(如图轴,轴),所以表示的是点与点连线的斜率,当在点时达到最大值,在点时达到最小值,故所求的取值范围是。故选C选项。

考查方向

本题主要考查了函数的性质(单调性)求解不等式和线性规划问题;属于高考热点问题,常考的有函数的性质、用图(数形结合思想)、复合方程问题,目标函数常见的有线性、斜率和距离型等。

解题思路

由函数的单调性结合不等式得出,对其进行因式分解画出可行域,再由可行域求出的取值范围。

易错点

本题易在上的处理上导致解题受阻。

知识点

函数性质的综合应用不等式与函数的综合问题
下一知识点 : 函数的值
百度题库 > 高考 > 理科数学 > 函数性质的综合应用

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题