- 对数函数模型的应用
- 共1344题
某地区预计从2011年初开始的第x月,商品A的价格f(x)=(x2-12x+69)(x∈N,x≤12,价格单位:元),且第x月该商品的销售量g(x)=x+12(单位:万件).(1)2011年的最低价格是多少?(2)2011年的哪一个月的销售收入最少?
正确答案
(1)∵价格函数为:f(x)=[(x-6)2+33],(x∈N,1≤x≤12),∴当x=6时,f(x)取得最小值,
即第6月的价格最低,最低价格为16.5元;
(2)设第x月的销售收入为y(万元),依题意有y=(x2-12x+69)(x+12)=
(x3-75x+828),
对y求导,得:y′=(3x2-75)=
(x+5)(x-5),
所以,当1≤x≤5时,y'≤0,y递减;
当5≤x≤12时,y'≥0,y递增,
所以,当x=5时,y最小,即第5个月销售收入最少;
答:2011年在第5月的销售收入最低.
现有一批货物由海上从A地运往B地,已知货船的最大航行速度为50海里/小时,A地到B地的航行距离为500海里,每小时的运输成本由燃料费和其余费用组成,货船每小时的燃料费用与货船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.
(1)把全程运输成本y(元)表示为货速度x(海里/小时)的函数
(2)为了使全程运输成本最低,货船应以多大速度行驶?
正确答案
(1)由题意得,货船每小时的燃料费用与货船速度的平方成正比
则每小时燃料费用为0.6x2(其中0<x≤50),全程所用时间为 小时;
则全程运输成本为y=(0.6x2+960)•…(3分)
即y=300(x+),(0<x≤50)…(4分)
(2)函数y=300(x+)≥300×2
=24000,…..(6分)
根据基本不等式成立的条件可知,当x=,时取等号,此时x=40…(7分)
所以为使运输成本最低,货船应以40海里/小时的速度行驶.….(8分)
某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.
(Ⅰ)求底面积,并用含x的表达式表示池壁面积;
(Ⅱ)当x为何值时,水池的总造价最低?
正确答案
(Ⅰ)设水池的底面积为S1,池壁面积为S2,
则有S1==1600(平方米),
可知,池底长方形宽为米,则S2=6x+6×
=6(x+
).…(6分)
(Ⅱ)设总造价为y,则y=150×1600+120×6(x+)≥240000+57600=297600
当且仅当x=,即x=40时取等号,
所以x=40时,总造价最低为297600元.
答:x=40时,总造价最低为297600元.…(12分)
某厂在一个空间容积为2000m3的密封车间内生产某种化学药品.开始生产后,每满60分钟会一次性释放出有害气体am3,并迅速扩散到空气中.每次释放有害气体后,车间内的净化设备随即自动工作20分钟,将有害气体的含量降至该车间内原有有害气体含量的r%,然后停止工作,待下一次有害气体释放后再继续工作.安全生产条例规定:只有当车间内的有害气体总量不超过1.25am3时才能正常进行生产.
(Ⅰ)当r=20时,该车间能否连续正常生产6.5小时?请说明理由;
(Ⅱ)能否找到一个大于20的数据r,使该车间能连续正常生产6.5小时?请说明理由.
正确答案
(Ⅰ)∵第一次释放有害气体am3,
∴第二次释放有害气体后(净化之前),车间内共有有害气体(a+ar%)m3,第三次释放有害气体后(净化之前),车间内共有有害气体[a+(a+ar%)r%]m3,…(2分)
∵6.5小时共释放出6次有害气体,且有害气体的含量逐次递增,
∴要使该车间能连续正常生产,在最后一次释放有害气体后(净化之前),车间内有害气体总量不得超过1.25am3,
即必须要有a+ar%+a(r%)2+…+a(r%)5≤1.25a,
即a•≤1.25a.…(4分)
∵当r=20时,<
=
=1.25,
∴当r=20时,该车间能连续生产6.5小时.…(6分)
(Ⅱ)设r%=0.2+x(x>0)满足条件,即要有≤1.25,
即(0.2+x)6≥1.25•x.(*)…(8分)
∵(0.2+x)6=0.26+6(0.2)5x+…>0.26+6(0.2)5x,
要使(*)成立,只要0.26+(0.2)5•16x-1.25x≥0即可,…(10分)
∴可取x=>0,
∴取r=20+100•,就可使该车间连续生产6.5小时.…(12分)
设某物体一天中的温度T是时间的函数:T(t)=at3+bt2+ct+d(a≠0),其中温度的单位是℃,时间单位是小时,t=0表示12:00,取正值表示12:00以后.若测得该物体在8:00的温度是8℃,12:00的温度为60℃,13:00的温度为58℃,且已知该物体的温度在8:00和16:00有相同的变化率.
(1)写出该物体的温度T关于时间的函数关系式;
(2)该物体在10:00到14:00这段时间中(包括10:00和14:00),何时温度最高,并求出最高温度;
(3)如果规定一个函数f(x)在区间[x1,x2](x1<x2)上的平均值为f(x)dx,求该物体在8:00到16:00这段时间内的平均温度.
正确答案
(1)求导函数可得T′=3at2+2bt+c
∵该物体的温度在早上8:00与下午16:00有相同的变化率
∴T′(-4)=T′(4),∴12a-8b+c=12a+8b+c,∴b=0
∵该物体在早上8:00的温度为8℃,中午12:00的温度为60℃,下午13:00的温度为58℃
∵该物体在早上8:00的温度为8℃,中午12:00的温度为60℃,下午13:00的温度为58℃
∴,
∴a=1,b=0,c=-3,d=60
∴T(t)=t3-3t2+60(-12≤t≤12);
(2)T′=3t2-3=3(t+1)(t-1),
令T′>0,可得t<-1或t>1;令T′<0,可得-1<t<1
∴函数在(-2,-1)上单调递增,在(-1,1)上单调递减,在(1,2)上单调递增
∵T(-2)=58,T(-1)=62,T(1)=58,T(2)=62
∴t=-1或t=2时,T(t)取到最大值62,说明在上午11:00与下午14:00,该物体温度最高,最高温度是62℃;
(3)由题意可得该物体在8:00到16:00这段时间内的平均温度为:
(t3-3t2+60)dt=
(
t4-t3+60t
=14.
所以该物体在8:00到16:00这段时间内的平均温度14℃.
扫码查看完整答案与解析