- 圆的方程
- 共2177题
已知A(-2,0),B(2,0),点P在圆(x-3)2+(y-4)2=4上运动,则|PA|2+|PB|2的最小值是______.
正确答案
∵点A(-2,0),B(2,0),
设P(a,b),则|PA|2+|PB|2=2a2+2b2+8,
由点P在圆(x-3)2+(y-4)2=4上运动,
(a-3)2+(b-4)2=4
令a=3+2cosα,b=4+2sinα,
所以|PA|2+|PB|2=2a2+2b2+8
=2(3+2cosα)2+2(4+2sinα)2+8
=66+24cosα+32sinα
=66+40sin(α+φ),(tanφ=).
所以|PA|2+|PB|2≥26.当且仅当sin(α+φ)=-1时,取得最小值.
∴|PA|2+|PB|2的最小值为26.
故答案为:26.
已知圆E经过点A(2,-3)、B(-2,-5),且圆心在直线x-2y-3=0上.
(1)求圆E的方程;
(2)若直线x+y+m=0与圆E交于P、Q两点,且 EP⊥EQ,求m的值.
正确答案
(1)∵圆心E在直线x-2y-3=0,可设圆心E(2b+3,b ).
由|EA|=|EB|可得 =
,
平方化简可得 5b2+10b+10=5b2+30b+30,
解得 b=-2,故点E(-1,-2).
由两点间距离公式得r2 =|EA|2=10,
所以,圆的方程为(x+1)2+(y+2)2=10.
(2)由题意可得△EPQ为等腰直角三角形,EP=EQ=r=,
设圆心到直线PQ的距离为d,可得 d=,
再由点E(-1,-2),PQ的方程为x+y+m=0,故有 =
,
解得m=3±.
已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A (1,0).
(1)若l1与圆C相切,求l1的方程;
(2)若l1的倾斜角为,l1与圆C相交于P,Q两点,求线段PQ的中点M的坐标;
(3)若l1与圆C相交于P,Q两点,求三角形CPQ的面积的最大值,并求此时l1的直线方程.
正确答案
以点(-3,4)为圆心且与直线x+y=5相切的圆的标准方程是 ______.
正确答案
由圆心到直线的距离r==2
,且圆心坐标为(-3,4),
所以圆的方程为(x+3)2+(y-4)2=8.
故答案为(x+3)2+(y-4)2=8.
已知圆M:x2+y2-2x-4y+1=0,则圆心M到直线(t为参数)的距离为______.
正确答案
把圆M的方程化为标准方程得:(x-1)2+(y-2)2=4,
得到圆心M的坐标为(1,2),
由直线的参数方程化为普通方程得:3x-4y-5=0,
则圆心M到直线的距离d==2.
故答案为:2
已知直线5x-12y+a=0与圆x2-2x+y2=0相切,则a的值为______.
正确答案
圆的方程可化为(x-1)2+y2=1,所以圆心坐标为(1,0),半径为1,
由已知可得=1⇒|5+a|=13,
所以a的值为-18或8.
故答案为:-18;8
已知圆C(x-a)2+(y-b)2=8(ab>0)过坐标原点,则圆心C到直线l:+
=1距离的最小值等于______.
正确答案
∵圆C(x-a)2+(y-b)2=8(ab>0)过坐标原点,
∴a2+b2=8≥2ab
∴ab≤4
又∵圆心C(a,b)到直线l:+
=1即直线ax+by-ab=0距离
d=≥
=
(当且仅当a=b=2时取等)
故圆心C到直线l:+
=1距离的最小值等于
故答案为:
光线从A(1,0)出发经y轴反射后到达x2+y2-6x-6y+17=0所走过的最短路程为______.
正确答案
找出A(1,0)关于直线x=0对称点 M(-1,0)
光线与y轴交点为P,所以有|PA|=|PM|,
最短路程等于M到原心的距离减去半径.
由x2+y2-6x-6y+17=0,得(x-3)2+(y-3)2=1.
所以圆的半径为2,圆心为C(3,3)
MC的距离为=5.
所以最短路程为5-1=4.
故答案为4.
已知点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线y2=2px(p>0)上的两个动点,O是坐标原点,且OA⊥OB,设圆C的方程为x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)证明:圆C是以线段AB为直径的圆;
(2)当圆心C到直线x-2y=0的距离的最小值为时,求P的值.
正确答案
(1)证明:因为OA⊥OB,∴x1x2+y1y2=0①
设点M(x,y)是以线段AB为直径的圆上的任意一点,则•
=0
即(x-x1)(x-x2)+(y-y1)(y-y2)=0
展开上式并将 ①代入得x2+y2-(x1+x2)x-(y1+y2)y=0
故圆C是以线段AB为直径的圆;
(2)设圆C的圆心为C(x,y),
则x=,y=
∵y12=2px1,y22=2px2(p>0),
∴x1x2=
又∵x1x2+y1y2=0
∴x1x2=-y1y2
∴-y1y2=
∴y1y2=-4p2
∴x==
(y12+y22)
=(y12+y22+2y1y2)-
=(y2+2p2)
∴圆心的轨迹方程为:y2=px-2p2
设圆心C到直线x-2y=0的距离为d,则d==
≥
∴当y=p时,d有最小值
∴=
∴p=5.
正方形ABCD的中心为(3,0),AB所在直线的方程为x-2y+2=0,则正方形ABCD的外接圆的方程为______.
正确答案
由题意,正方形ABCD的外接圆的圆心为(3,0),
∵(3,0)到直线AB的距离为=
∴圆的半径为•
=
∴正方形ABCD的外接圆的方程为(x-3)2+y2=10
故答案为:(x-3)2+y2=10.
扫码查看完整答案与解析