- 三角函数的最值
- 共80题
设函数。
(1)求函数的最小正周期和单调递增区间;
(2)当时,
的最大值为2,求
的值,并求出
的对称轴方程。
正确答案
见解析
解析
解:(1)
则的最小正周期
,
且当时
单调递增。
即为
的单调递增区间
(2)当时
,当
,即
时
。
所以,
为
的对称轴,
知识点
设函数,其中向量
,
,x∈R.
(1)求的值及函数
的最大值;
(2)求函数的单调递增区间。
正确答案
见解析
解析
(1),
,
=
·
=
.
又
函数
的最大值为
.
当且仅当(
Z)时,函数
取得最大值为
.
(2)由(
Z),
得 (
Z).
函数
的单调递增区间为[
](
Z).
知识点
已知函数,
(1)求函数的最大值及取得最大值时自变量
的集合;
(2)求函数的单调增区间。
正确答案
见解析。
解析
(1)
令 得:
函数的最大值为
,取得最大值的自变量
的集合为:
(2) 由
得: ,
故的单调求递增区间为:
知识点
已知向量,
,设函数
,
(1)求函数的最小正周期及在区间
上的最大值;
(2)已知在中,内角
的对边分别为
,其中
为锐角,
,
,又
,求
的值。
正确答案
见解析
解析
(1)函数。
∴, (3分)
∵,∴
,
∴,即
。
∴函数在区间
上的最大值为2. (6分)
(2)∵,
∴,∴
,
∵为锐角,∴
,
。
又,∴
。
∵为锐角,∴
, (9分)
由正弦定理得,∴
。
又,∴
, (10分)
而,
由正弦定理得,∴
, (12分)
知识点
15.在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc.
(1)求角A的大小;
(2)设函数,求
的最大值,并判断此时△ABC的形状.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
15.已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)当时,求函数
的最大值和最小值及相应的
的值.
正确答案
(Ⅰ)因为,
所以,故
的最小正周期为π.
(Ⅱ)因为, 所以
.
所以当,即
时,
有最大值
.
当,即
时,
有最小值
.
解析
解析已在路上飞奔,马上就到!
知识点
16. 设函数f(x)=,其中向量
,
.
(1)求f()的值及f(x)的最大值。
(2)求函数f(x)的单调递增区间。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
16.设.
(1)求f(x)的最小正周期;
(2)若函数y=f(x)与y=g(x)的图象关于直线x=1对称,求当时y=g(x)的最大值.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
16.已知函数.
(1)求函数的最小正周期和最值;
(2)求函数的单调递减区间.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
7.已知函数则下列正确的是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析