- 二次函数的零点问题
- 共17题
8.已知:关于x的方程的一根小于0,另一根大于2,则a的取值范围是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
10.已知函数,下列关于函数的零点个数的四个判断正确的有( )
(1)当时,有3个零点;
(2)当时,有2个零点;
(3)当时,有4个零点;
(4)当时,有1个零点.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
阅读下面材料:
根据两角和与差的正弦公式,有------①
------②
由①+②得------③
令 有
代入③得 。
(1)类比上述推理方法,根据两角和与差的余弦公式,证明:
;
(2)若的三个内角满足,试判断的形状,(提示:如果需要,也可以直接利用阅读材料及(1)中的结论)
正确答案
见解析。
解析
解法一:(1)证明:因为,------①
,------②…………………1分
①-② 得,------③………………2分
令有,
代入③得,………………………5分
(2)由二倍角公式,可化为
,………………………………8分
所以,…………………………………9分
设的三个内角A,B,C所对的边分别为,
由正弦定理可得,………………………………11分
根据勾股定理的逆定理知为直角三角形,………………………12分
解法二:(1)同解法一。
(2)利用(1)中的结论和二倍角公式,可化为
,………………………8分
因为A,B,C为的内角,所以,
所以。
又因为,所以,
所以。
从而,……………………………………………9分
又,所以,故,………………………11分
所以为直角三角形,………………………………12分
知识点
若关于的实系数方程有两个根,一个根在区间内,另一根在区间内,记点对应的区域为。
(1)设,求的取值范围;
(2)过点的一束光线,射到轴被反射后经过区域,求反射光线所在直线经过区域内的整点(即横纵坐标为整数的点)时直线的方程。
正确答案
(1)(2)
解析
解析:方程的两根在区间和上的几何意义是:函数与轴的两个交点的横坐标分别在区间和内,由此可得不等式组
,即,则在坐标平面
内,点对应的区域如图阴影部分所示
易得图中三点的坐标分别为(4分)
(1)令,则直线经过点时
取得最小值,经过点时取得最大值,即,
又三点的值没有取到,所以(8分)
(2)过点的光线经轴反射后的光线必过点,由图可知
可能满足条件的整点为,再结合不等式知点符合条件,所以此时直线方程为:,即(12分)
知识点
16.已知,方程的两个实数根为,
(1)求的取值范围;
(2)若,求的值.
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析