- 对数函数
- 共8722题
我们给出如下定义:对函数y=f(x),x∈D,若存在常数C(C∈R),对任意的x1∈D,存在唯一的x2∈D,使得=C,则称函数f(x)为“和谐函数”,称常数C为函数f(x)的“和谐数”.
(1)判断函数f(x)=x+1,x∈[-1,3]是否为“和谐函数”?答:______.(填“是”或“否”)如果是,写出它的一个“和谐数”:______.(4分)
(2)证明:函数g(x)=lgx,x∈[10,100]为“和谐函数”,是其“和谐数”;
(3)判断函数u(x)=x2,x∈R是否为和谐函数,并作出证明.
正确答案
(1)∵对任意x1∈[-1,3],令=2,得x2=2-x1,∴x2∈[-1,3],即对任意的x1∈[-1,3],存在唯一的x2=2-x1∈[-1,3],使得
=2,
故正确答案为 是; 2
(2)证明:①对任意x1∈[10,100],令=
,即
=
,
得x2=.∵x1∈[10,100],∴x2=
∈[10,100].
即对任意x1∈[10,100],存在唯一的x2=∈[10,100],使得
=
.
∴g(x)=lgx为“和谐函数”,其“和谐数”为.
参照上述证明过程证明:函数h(x)=2x,x∈(1,3)为“和谐函数”,5是其“和谐数”;
②对任意x1∈(1,3),令=5,即
=5,得2x2=10-2x1,x2=log2(10-2x1).∵x1∈(1,3),∴10-2x1∈(2,8),x2=log2(10-2x1)∈(1,3).
即对任意x1∈(1,3),存在唯一的x2=log2(10-2x1)∈(1,3),使得=5.
∴h(x)=2x,x∈(1,3)为“和谐函数”,5是其“和谐数”
(3)函数u(x)=x2,x∈R不是“和谐函数”,证明如下:
对任意的常数C,①若C≤0,则对于x1=1,显然不存在x2∈R,使得=
=C成立,
所以C(C≤0)不是函数u(x)=x2,x∈R的和谐数;
②若C>0,则对于x1=,由
=
=C得,x22=-2C<0,
即不存在x2∈R,使=C成立.所以C(C>0)也不是函数u(x)=x2,x∈R的和谐数.
综上所述,函数u(x)=x2,x∈R不是“和谐函数”.
计算:
(1)(2)12-(-9.6)0-(3
)-23+(1.5)-2
(2)2log5125+3log264-8logπ1
正确答案
(1)(2
1
4
)12-(-9.6)0-(3
3
8
)-23+(1.5)-2
=(
9
4
)12-1 -(
27
8
)-23+(
3
2
)-2
=-1-
+
=
(2)2log5125+3log264-8logπ1
=2log553+3log226-0
=6+18-0
=24
计算题
(1)(0.25)12-[-2×()0]2×[(-2)3]43+(
-1)-1-212
(2)2log32-log332+log38-52log53
正确答案
(1)原式=-(-2)2×(-2)4+
-
=
-64+
+1-
=-
;
(2)原式=+log38-log332-32=log34×8-log332-9=-9.
计算下列各式的值
(1)0.064 -13-(-)0+160.75+0.25 12
(2)lg5+(log32)•(log89)+lg2.
正确答案
(1)0.064 -13-(-)0+160.75+0.25 12
=((0.4)3)-13-1+(24)34+(0.52)12
=(0.4)-1-1+8+0.5
=2.5-1+8+0.5
=10;
(2)lg5+(log32)•(log89)+lg2
=lg5+•
+lg2
=1+•
=1+=
.
(1)计算:0.25-2+()-13-
lg16-2lg5+(
1
3
)0;
(2)解方程:log2(9x-5)=log2(3x-2)+2.
正确答案
(1)0.25-2+()-13-
lg16-2lg5+(
1
3
)0
=16+-lg4-lg25+1
=16+-2+1
=.
(2)∵log2(9x-5)=log2(3x-2)+2,
∴log2(9x-5)=log24(3x-2)
则原方程等价于,
∴(3x)2-4•3x+3=0,即(3x-3)(3x-1)=0,
∵3x>2,∴3x=3,∴x=1.
经检验,得原方程的根为x=1.
计算:
(1)(2)0+2-2×(2
)-12-(0.01)0.5;
(2)lg14-21g+lg7-lg18.
正确答案
(1)(2)0+2-2×(2
)-12-(0.01)0.5
=1+×
-0.1
=1+-
=.
(2)lg14-21g+lg7-lg18
=lg(14÷×7÷18)
=lg1
=0.
化简求值
(1)若x>0,化简 (2x 14+3 32)(2x 14-3 32)-4x -12(x-x 12).
(2)计算:2(lg)2+lg
•lg5+
.
正确答案
解析:(1)原式=(2x14)2-(332)2-4x1-12+4x-12+12=4x12-27-4x12+4=-23.
(2)原式=lg(2lg
+lg 5)+
=lg(lg 2+lg 5)+|lg
-1|
=lg+(1-lg
)=1.
(1)计算log3+lg25+lg4+7log72
(2)已知x12+x-12=3,求的值.
正确答案
解(1)log3+lg25+lg4+7log72
=log3+lg52+lg22+2
=-+2(lg5+lg2)+2
=;
(2)由x12+x-12=3,
得:(x12+x-12)2=9,
所以,x+2+x-1=9,
故x+x-1=7,
所以,=
=
.
计算:
(1)lg700-lg56-3lg+20(lg20-lg2)2+71-log27;
(2)计算2-(12)++
-
-823.
正确答案
(1)原式=lg+20×(lg
)2+
=lg100+20×1+
=2+20+
=
;
(2)原式=+
+(
+1)-1-(23)23=2
-4.
(1)计算()-13×(-π)0+814×
+(
×
)6-
(2)已知log189=a,18b=5,求log365.
正确答案
(1)()-13×(-π)0+814×
+(
×
)6-
=(
2
3
)13+234×214+22×33-()13
=2+4×27
=110.
(2)∵log189=a,
∴a=log18=1-log182,
又∵18b=5,
∴b=log185,
∴log365==
=
.
扫码查看完整答案与解析