- 不等式选讲
- 共116题
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
选修4-1:几何证明选讲(请回答28、29题)
如图,在正方形中,分别在边上(不与端点重合),且,过点作
,垂足为.
选修4—4:坐标系与参数方程(请回答30、31题)
在直角坐标系中,圆的方程为.
选修4—5:不等式选讲(请回答32、33题)
已知函数,为不等式的解集.
28.证明:四点共圆;
29.若,为的中点,求四边形的面积.
30.以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;
31.直线的参数方程是(为参数), 与交于两点,,求的斜率.
32.求;
33.证明:当时,.
正确答案
(Ⅰ)详见解析;
解析
试题分析:本题属于圆的综合应用问题,属于简单题,只要掌握相关圆的知识,即可解决本题,解析如下:
(Ⅰ)证明:∵
∴
∴
∵,
∴
∴
∴
∴
∴.
∴B,C,G,F四点共圆.
考查方向
解题思路
(1)利用三角形相似即可证明四点共圆;
易错点
对相关定理不熟悉导致本题失分。
正确答案
(Ⅱ).
解析
试题分析:本题属于圆的综合应用问题,属于简单题,只要掌握相关圆的知识,即可解决本题,解析如下:
(II)由四点共圆,知,连结,
由为斜边的中点,知,故
因此四边形的面积是面积的2倍,即
考查方向
解题思路
(2)由四点共圆可得,再证明,根据四边形的面积是面积的2倍求得结论.
易错点
对相关定理不熟悉导致本题失分。
正确答案
(Ⅰ);
解析
试题分析:本题属于坐标系与参数方程的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:
试题解析:(I)由可得的极坐标方程
考查方向
解题思路
(1)直接利用互化公式即可求出极坐标方程;
易错点
不能熟记极坐标方程与参数方程的互化公式及应用导致本题出错。
正确答案
(Ⅱ).
解析
试题分析:本题属于坐标系与参数方程的综合应用问题,属于简单题,只要掌握相关的知识,即可解决本题,解析如下:
(II)在(I)中建立的极坐标系中,直线的极坐标方程为
由所对应的极径分别为将的极坐标方程代入的极坐标方程得
于是
由得,
所以的斜率为或.
考查方向
解题思路
(2)先求出直线l的极坐标方程,将其带入C的极坐标方程得到关于的一元二次方程,再根据维达定理、弦长公式求出,进而求出直线的斜率.
易错点
不能熟记极坐标方程与参数方程的互化公式及应用导致本题出错。
正确答案
(Ⅰ);
解析
试题分析:本题属于不等式的选讲内容,不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等,解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式,属于简单题,只要掌握相关不等式的知识,即可解决本题,解析如下:
(I)
当时,由得解得;
当时, ;
当时,由得解得.
所以的解集.
考查方向
解题思路
(1)根据零点分段讨论法直接求解;
易错点
第二问不知如何运用已知条件导致此问无思路。
正确答案
(Ⅱ)详见解析.
解析
试题分析:本题属于不等式的选讲内容,不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等,解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式,属于简单题,只要掌握相关不等式的知识,即可解决本题,解析如下:
(II)由(I)知,当时,,
从而,
因此
考查方向
解题思路
(2)采用平方作差法,再临行因式分解,进而可证当时.
易错点
第二问不知如何运用已知条件导致此问无思路。
22.选考题:请在下列A、B、C三题中任选一题作答
A.【选修4-1:几何证明选讲】
如图,Δ是内接于⊙O,,直线切⊙O于点,弦,与相交于点.
(I) 求证:Δ≌Δ;
(Ⅱ)若,求.
B.【选修4—4:坐标系与参数方程】
以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为,点M的极坐标为,若直线l过点P,且倾斜角为,圆C以M为 圆心、4为半径。
(I) 写出直线l的参数方程和圆C的极坐标方程;
(Ⅱ)试判定直线l和圆C的位置关系。
C.【选修4—5:不等式选讲】
设函数,且的最小值为3,若,求x的取值范围。
正确答案
A.
B.
C.
解析
解析已在路上飞奔,马上就到!
知识点
21.[选做题]
在下面A,B,C,D四个小题中只能选做两题。
A.选修4-1:几何证明选讲
如图,是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连结AD交于点E,连结BE与AC交于点F,判断BE是否平分,并说明理由。
B.选修4-2:矩阵与变换
已知矩阵,矩阵M对应的变换把曲线y=sinx变为曲线C,求C得方程。
C.选修4-4:坐标系与参数方程
已知曲线C的极坐标方程是,求曲线C的普通方程。
D.选修4-5:不等式选讲
已知且x+y+z=3,求得最小值。
正确答案
A.
B.
C.
D.
解析
解析已在路上飞奔,马上就到!
知识点
21.【选做题】在下面A,B,C,D四个小题中只能选做两题。
A.选修4-1:几何证明选讲
如图,设AB为的任一条不与直线l垂直的直径,P是与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD。
求证:
(1)l是的切线;
(2)PB平分。
B.选修4-2:矩阵与变
已知矩阵
(1)求矩阵MN;
(2)若点P在矩阵MN对应的变换作用下得到Q(0,1),求点P的坐标。
C.选修4-4:坐标系与参数方程
在直角坐标系xoy中,曲线C的参数方程为(为参数),若以直角坐标系xoy的原点为极点,ox为极轴,且长度单位相同,建立极坐标系,直线l的极坐标方程为,求与直线l垂直且与曲线C相切的直线m的极坐标方程。
D.选修4-5:不等式选讲
设,实数a满足,求证:。
正确答案
A.
B.
C.
D.
解析
解析已在路上飞奔,马上就到!
知识点
21.[选做题]
在A、B、C、D四小题中只能选做2题。解答应写出文字说明、证明过程或演算步骤。
A.选修4-1:几何证明选讲
如图,△ABC是的内接三角形,PA是的切线,PB交AC于点E,交于点D。若PE=PA,,PD=1,BD=8,求BC的长。
B.选修4-2:矩阵与变换
已知在一个二阶矩阵M的变换作用下,点A(1,2)变成了点,点变成了,求矩阵M。
C.选修4-4:坐标系与参数方程
自极点O作射线与直线相交于点M,在OM上取一点P,使得OM·OP=12,求点P的轨迹方程,并判断点P的轨迹与直线 (t是参数)的位置关系。
D.选修4-5:不等式选讲
设且,试比较与的大小。
正确答案
A.
B.
C.
D.
解析
解析已在路上飞奔,马上就到!
知识点
21.【选做题】
在A、B、C、D四小题中只能选做2题。解答应写出文字说明、证明过程或演算步骤。
A.几何证明选讲
在△ABC中,已知AC=AB,CM是的平分线,△AMC的外接圆交BC边于点N,求证:BN=2AM。
B.矩阵与变换
在平面直角坐标系中,设圆在矩阵对应的变换作用下得到曲线F,求曲线F的方程。
C.坐标系与参数方程
在平面直角坐标系中,设M是椭圆上在第一象限的点,和是椭圆的两个顶点,求四边形的面积的最大值。
D.不等式选讲
设,求证:,等号当且仅当ad=bc时成立。
正确答案
A.
B.
C.
D.
解析
解析已在路上飞奔,马上就到!
知识点
21.(选做题,以下A.B.C.D四㼵中选择两题做答)
A.(选修4-1:几何证明选讲)
如图,的直径AB的延长线与弦CD的延长线相交于P,E为上一点,AE=AC,DE交AB于点F。
求证:
B.(选修4-2:矩阵与变换)
已知在一个二阶矩阵M对应变换的作用下,点变成了点,点变成了点,求矩阵M的逆矩阵。
C.选修4-4:坐标系与参数方程)
已知曲线,直线。
(1)将直线的极坐标方程化为直角坐标方程;
(2)设点P在曲线C上,求P点到直线距离的最小值。
D.(选修4-5:不等式选讲)
设函数,若不等式对任意且恒成立,求实数x的范围。
正确答案
A
B
C
D
解析
解析已在路上飞奔,马上就到!
知识点
21.【选做题】
在A、B、C、D四小题中只能选做2题。解答应写出文字说明、证明过程或演算步骤。
A.(几何证明选讲选做题)
如图,已知AB为园O的直径,BC切园O于点B,AC交园O于点P,E为线段BC的中点,求证OP⊥PE。
B.(矩阵与变换选做题)
已知,,设曲线在矩阵MN对应的变换作用下得到曲线F,求F的方程。
C.(坐标系与参数方程选做题)
在平面直角坐标系中,直线m的参数方程为(t为参数);在以O为极点、射线为极轴的极坐标系中,曲线C的极坐标方程为.若直线m与曲线C交于A、B两点,求线段AB的长。
D.(不等式选做题)
设x,y均为正数,且x>y,求证:。
正确答案
A.
B.
C.
D.
解析
解析已在路上飞奔,马上就到!
知识点
设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质。
(1)设函数,其中为实数。
(i)求证:函数具有性质; (ii)求函数的单调区间。
(2)已知函数具有性质。给定设为实数,
,,且,
若||<||,求的取值范围。
正确答案
见解析。
解析
(1)(i)
∵时,恒成立,
∴函数具有性质;
(ii)(方法一)设,与的符号相同。
当时,,,故此时在区间上递增;
当时,对于,有,所以此时在区间上递增;
当时,图像开口向上,对称轴,而,
对于,总有,,故此时在区间上递增;
(方法二)当时,对于,
所以,故此时在区间上递增;
当时,图像开口向上,对称轴,方程的两根为:,而
当时,,,故此时在区间 上递减;同理得:在区间上递增。
综上所述,当时,在区间上递增;
当时,在上递减;在上递增。
(2)(方法一)由题意,得:
又对任意的都有>0,
所以对任意的都有,在上递增。
又。
当时,,且,
综合以上讨论,得:所求的取值范围是(0,1)。
(方法二)由题设知,的导函数,其中函数对于任意的都成立。所以,当时,,从而在区间上单调递增。
①当时,有,
,得,同理可得,所以由的单调性知、,
从而有||<||,符合题设。
②当时,,
,于是由及的单调性知,所以||≥||,与题设不符。
③当时,同理可得,进而得||≥||,与题设不符。
因此综合①、②、③得所求的的取值范围是(0,1)。
知识点
12.已知关于的不等式组所表示的平面区域为三角形区域,则实数的取值范围是 .
正确答案
解析
略
知识点
扫码查看完整答案与解析