热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

20. 如图,已知定点,点是定直线上的动点,∠的角平分线交

(1)求点的轨迹方程;

(2)若(1)中轨迹上是否存在一点,直线,使得∠是直角?如果存在,求点坐标;如果不存在,请说明理由。

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直接法求轨迹方程圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

20.如图,椭圆C:(a>b>0)的离心率e=,左焦点为F,A,B,C为其三个顶点,直线CF与AB交于点D,若△ADC的面积为15.

(Ⅰ)求椭圆C的方程;

(Ⅱ)是否存在分别以AD,AC为弦的两个相外切的等圆?若存在,求出这两个圆的圆心坐标;若不存在,请说明理由.

正确答案

(Ⅰ)解:设左焦点F的坐标为(-c,0),其中c=

∵e=,∴a=c,b=c.

∴A(0,c),B(-c,0),C(0,-c),

∴AB:,CF:

联立解得D点的坐标为(-c,c).

∵△ADC的面积为15,∴|xD|·|AC|=15,即·c·2·c=15,

解得c=3,∴a=5,b=4,∴椭圆C的方程为

(Ⅱ)由(Ⅰ)知,A点的坐标为(0,4),D点的坐标为(-,1).

假设存在这样的两个圆M与圆N,其中AD是圆M的弦,AC是圆N的弦,

则点M在线段AD的垂直平分线上,点N在线段AC的垂直平分线y=0上.

当圆M和圆N是两个相外切的等圆时,一定有A,M,N在一条直线上,且AM=AN.

∴M、N关于点A对称,设M(x1,y1),则N(-x1,8-y1),

根据点N在直线y=0上,∴y1=8.∴M(x1,8),N(-x1,0),

而点M 在线段AD的垂直平分线y-=-(x+)上,可求x1=-

故存在这样的两个圆,且这两个圆的圆心坐标分别为

M(-,8),N(0).

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

22.已知抛物线,过点的直线与抛物线交于两点,且直线与轴交于点.

(1)求证:成等比数列;

(2)设,试问是否为定值,若是,求出此定值;若不是,请说明理由.

正确答案

解:(1)设直线的方程为:

联立方程可得得:               ①

,则  ②

,∴

成等比数列           

(2)由得,

即得:,则

由(1)中②代入得,故为定值且定值为

解析

解析已在路上飞奔,马上就到!

知识点

等比数列的判断与证明抛物线的标准方程和几何性质圆锥曲线的定点、定值问题圆锥曲线中的探索性问题
1
题型:简答题
|
简答题 · 13 分

21.已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.

(1)求椭圆的方程;

(2)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

20.已知椭圆的焦点坐标是,过点垂直与长轴的直线交椭圆与两点,且.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过的直线与椭圆交与不同的两点,则的内切圆面积是否存在最大值?若存在,则求出这个最大值及此时的直线方程;若不存在,请说明理由.

正确答案

 

 

解析

解析已在路上飞奔,马上就到!

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题圆锥曲线中的探索性问题
下一知识点 : 直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 理科数学 > 圆锥曲线中的探索性问题

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题