- 直线与椭圆的位置关系
- 共19题
20.已知椭圆C:的离心率为,以原点O为圆心,椭圆的短半轴长为半径的圆与直线相切
(Ⅰ)求椭圆C的标准方程
(Ⅱ)若直线L:与椭圆C相交于A、B两点,且
求证:的面积为定值
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
8.已知椭圆C: 的左,右焦点分别为F1,F2,动直线l:y=x+m与椭圆C相切,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.则四边形F1MNF2的面积为________
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
11.已知椭圆(a>b>0)的左、右焦点分别为F1,F2,过F2的直线与椭圆交于A、B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则离心率为
正确答案
解析
设F1A=x, F2A=y,由题可知,x+y=2a,x2+y2=4c2,2x+√2x=4a,联立方程组,代换得a2(9-6√2)=c2,即e=-。A选项不正确,B选项不正确,C选项不正确,所以选D选项。
考查方向
本题主要考查直线与椭圆的位置关系
解题思路
1、用a,c表示出F1A,F2A;
2、将所求式子联立,即可得到结果。A选项不正确,B选项不正确,C选项不正确,所以选D选项。
易错点
本题易在表示a, c关系时发生错误。
知识点
20. 如图,在平面直角坐标系中,椭圆的离心率为,直线与轴交于点,与椭圆交于、两点.当直线垂直于轴且点为椭圆的右焦点时, 弦的长为.
(1)求椭圆的方程;
(2)若点的坐标为,点在第一象限且横坐标为,连结点与原点的直线交椭圆于另一点,求的面积;
(3)是否存在点,使得为定值?若存在,请指出点的坐标,并求出该定值;若不存在,请说明理由.
正确答案
(1) ;
(2);
(3)存在点,使得为定值.
解析
试题分析:本题属于解析几何的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意计算的准确性,
(1)由,设,则,,
所以椭圆的方程为,因直线垂直于轴且点为椭圆的右焦点,即,代入椭圆方程,解得,于是,即,
所以椭圆的方程为
(2)将代入,解得,因点在第一象限,从而,
由点的坐标为,所以,直线的方程为,
联立直线与椭圆的方程,解得,
又过原点,于是,,所以直线的方程为,
所以点到直线的距离,
故 .
(3)假设存在点,使得为定值,设,
当直线与轴重合时,有,
当直线与轴垂直时,,
由,解得,,
所以若存在点,此时,为定值2.
根据对称性,只需考虑直线过点,设,,
又设直线的方程为,与椭圆联立方程组,
化简得,所以,,
又,
所以,
将上述关系代入,化简可得.
综上所述,存在点,使得为定值.
考查方向
本题主要考查了本题考查了椭圆的集合性质和直线与椭圆的位置关系
解题思路
(1)因直线垂直于轴且点为椭圆的右焦点,即,代入椭圆方程,解得,由此求出椭圆C的方程;
(2)将代入,解得y,可得直线AB的方程,与椭圆方程联立解得B,又PA过原点O,可得P,|PA|,直线PA的方程,
求出点B到直线PA的距离h;
(3)假设存在点E,使得为定值. 利用特殊位置法求出点E,然后判断点E任意情况均成立
易错点
(1)计算的准确性
(2)存在性问题,先特殊在一般
知识点
20.已知椭圆C:,其右焦点,离心率为.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知直线与椭圆C交于不同的两点,且线段的中点不在圆内,求的取值范围.
正确答案
见解析
解析
试题分析:本题属于圆锥曲线中的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意对参数的讨论.
试题解析:(Ⅰ)由题可知,又,故
所以椭圆的标准方程为
(Ⅱ)联立方程消去整理得:
则,解得,
设,则,
即的中点为
又的中点不在圆内,所以,解得或
综上可知,或
考查方向
本题考查了直线与圆锥曲线的位置关系及综合应用,属于高考中的高频考点.
解题思路
本题考查圆锥曲线与直线的位置关系,解题步骤如下:
(1)利用e及对称性求a,b。
(2)联立直线与椭圆方程求解。
易错点
第二问中表示直线斜率时容易出错。
知识点
扫码查看完整答案与解析