- 基本初等函数(1)
- 共14786题
计算下列各式的值
(1)0.064 -13-(-)0+160.75+0.25 12
(2)lg5+(log32)•(log89)+lg2.
正确答案
(1)0.064 -13-(-)0+160.75+0.25 12
=((0.4)3)-13-1+(24)34+(0.52)12
=(0.4)-1-1+8+0.5
=2.5-1+8+0.5
=10;
(2)lg5+(log32)•(log89)+lg2
=lg5+•
+lg2
=1+•
=1+=
.
(1)计算:0.25-2+()-13-
lg16-2lg5+(
1
3
)0;
(2)解方程:log2(9x-5)=log2(3x-2)+2.
正确答案
(1)0.25-2+()-13-
lg16-2lg5+(
1
3
)0
=16+-lg4-lg25+1
=16+-2+1
=.
(2)∵log2(9x-5)=log2(3x-2)+2,
∴log2(9x-5)=log24(3x-2)
则原方程等价于,
∴(3x)2-4•3x+3=0,即(3x-3)(3x-1)=0,
∵3x>2,∴3x=3,∴x=1.
经检验,得原方程的根为x=1.
计算:
(1)(2)0+2-2×(2
)-12-(0.01)0.5;
(2)lg14-21g+lg7-lg18.
正确答案
(1)(2)0+2-2×(2
)-12-(0.01)0.5
=1+×
-0.1
=1+-
=.
(2)lg14-21g+lg7-lg18
=lg(14÷×7÷18)
=lg1
=0.
化简求值
(1)若x>0,化简 (2x 14+3 32)(2x 14-3 32)-4x -12(x-x 12).
(2)计算:2(lg)2+lg
•lg5+
.
正确答案
解析:(1)原式=(2x14)2-(332)2-4x1-12+4x-12+12=4x12-27-4x12+4=-23.
(2)原式=lg(2lg
+lg 5)+
=lg(lg 2+lg 5)+|lg
-1|
=lg+(1-lg
)=1.
(1)计算log3+lg25+lg4+7log72
(2)已知x12+x-12=3,求的值.
正确答案
解(1)log3+lg25+lg4+7log72
=log3+lg52+lg22+2
=-+2(lg5+lg2)+2
=;
(2)由x12+x-12=3,
得:(x12+x-12)2=9,
所以,x+2+x-1=9,
故x+x-1=7,
所以,=
=
.
不用计算器计算下列各式的值:
(1)(a23b12)(-3a12b13)÷(a16b56);
(2)log3+lg25+lg4-3log32.
正确答案
(1)原式=-9a23+12-16b12+13-56=-9ab0=-9a.
(2)原式=log33-12+lg(25×4)-2=-+2-2=-
.
已知9x-12•3x+27≤0,求y=(log2)•(log12
)最值及对应的x值.
正确答案
∵9x-12•3x+27≤0,∴(3x-3)•(3x-9)≤0,即3≤3x≤9,得1≤x≤2,
∴y=(log2x-1)(log 12212+log 122x)=(log2x-1)(log2x+)
∴令t=log2x,则0≤t≤1,
y=t2-t-
= (t-
1
4
)2-,
∴当t=1,即x=2时,y取得最大值0;
当t=,即x=
时,y取得最小值-
.
计算
(1)-
+(2
)-0.5-
π0
(2)log318-log32-log29•log34+2log23.
正确答案
(1)原式=|2-e|-+[(
)2]-12-
=e-2-+(
)-1-
=e-2-e+-
=-2.
(2)原式=log3-
×
+3
=log332-4+3
=2-4+3
=1.
计算:
(1)log256.25+lg0.01+ln-2 1+log23
(2)()-3+4×(
)-12×80.25-(-
)0.
正确答案
log256.25+lg0.01+ln- 21+log23
=log52.5-2+- 2log26
=log52.5-2+-6
=log52.5-
(2)(
1
2
)-3+4×(
16
49
)-12×80.25-(-
5
8
)0
=8+4××234-1
=7+7×234
计算:
(Ⅰ)2-12++
-
(Ⅱ)2×(lg)2+
lg2×lg5+
.
正确答案
(Ⅰ)2-12++
-
=+
+
+1-1
=2.
(Ⅱ)2×(lg)2+
lg2×lg5+
=2×(lg2)2+
lg2•lg5+
=lg22+
lg2•lg5-(lg
-1)
=lg22+
lg2•lg5-
g2+1
=lg2(lg2+lg5-1)+1
=lg2(lg10-1)+1
=1.
把分母有理化.
正确答案
原式==
=
(
+
).
(1)已知a+a-1=5,求①a2+a-2,②a12-a-12.
(2)求log2+log927+4log34的值.
正确答案
(1)①由a+a-1=5,得a2+a-2+2=25,
所以a2+a-2=23.
②由(a12+a-12)2=a+a-1+2=7,
所以a12-a-12=±.
(2)log2+log927+4log34
=+
log33+3=
+
+3=5.
(1)计算()12+(lg5-1)0+(
)-13;
(2)设log23=a,用a表示log49-3log26.
正确答案
(1)原式=[(
5
3
)2] 12+1+[(
3
4
)3]-13=+1+
=4;
(2)原式=-3log22×3=log23-3(1+log23)=a-3(1+a)=-2a-3.
化简计算
(1)(2a-3•b-23)•(-3a-1b)÷(4a-4b-53)
(2)log535-2log5+log57-log51.8.
正确答案
(1)原式=[2•(-3)÷4](a-3a-1a4)(b-23b•b53)=-b2
(2)原式=log55+log57-2(log57-log53)+log57-(log59-log55)
=1+log57-2log57+2log53+log57-2log53+1
=2
已知a=(2)12-(9.6)0-(3
)-23+(1.5)-2,b=(log43+log83)(log32+log92),求a+2b的值.
正确答案
a=(2
1
4
)12-(9.6)0-(3
3
8
)-23+(1.5)-2
=()2×12-1-(
)3×(-23)+(
)-2
=-1=
.
b=(log43+log83)(log32+log92)
=(log23+
log23)(log32+
log32)
=×
=,
∴a=,b=
,
∴a+2b=3.
扫码查看完整答案与解析