热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

已知函数

25.若函数上是减函数,求实数的取值范围;

26.令,是否存在实数,当是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;

27.当时,证明:

第(1)小题正确答案及相关解析

正确答案

见解析

解析

考查方向

利用导数求函数的单调区间;导数的集合意义;利用导数证明不等式

解题思路

第1问利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。第3问通过构造函数证明不等式。

易错点

求导数错误,参数的取值范围分类错误

第(2)小题正确答案及相关解析

正确答案

见解析

解析

考查方向

利用导数求函数的单调区间;导数的集合意义;利用导数证明不等式

解题思路

第1问利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。第3问通过构造函数证明不等式。

易错点

求导数错误,参数的取值范围分类错误

第(3)小题正确答案及相关解析

正确答案

见解析

解析

考查方向

利用导数求函数的单调区间;导数的集合意义;利用导数证明不等式

解题思路

第1问利用导数求函数的单调区间,第2问利用分类讨论思想,讨论参数的值。第3问通过构造函数证明不等式。

易错点

求导数错误,参数的取值范围分类错误

1
题型:简答题
|
简答题 · 15 分

19.已知函数(a,bR),记M(a,b)是|f(x)|在区间[-1,1]上的最大值。

(1)证明:当|a|≥2时,M(a,b)≥2;

(2)当a,b满足M(a,b)≤2,求|a|+|b|的最大值.

正确答案

(1)详见解析;(2)3;

解析

试题分析:(1)分析题意可知上单调,从而可知M(a,b)=max,分类讨论a的取值范围即可求解;(2)分析题意可知|a|+|b|=,再由M(a,b) ≤2可得|1+a+b|=|f(1)|2,|1-a+b|=f(1) 2,即可求证.

(1)由f(x)= ,得对称轴为直线,由|a|2,得,故f(x)在上单调,∴M(a,b)=max{|f(1)|,|f(-1)|},当a2时,由f(1)-f(-1)=2a4,得max{f(1),f(-1)} 2,即M(a,b) 2,当a-2时,由f(-1)-f(1)=2a4,得max{f(1),f(-1)} 2,即M(a,b) 2,综上,当|a|2时,M(a,b)2;

(2)由M(a,b)2得|1+a+b|=f(1) 2,|1-a+b|=|f(1)| 2,故|a+b|3,且上的最大值为2,即M(2,-1)=2,∴|a|+|b|3,当a=2,b=-1时,|a|+|b|=3,且上的最大值为2,即M(2,-1)=2,∴|a|+|b|的最大值为3.

考查方向

本题考查了二次函数在闭区间上求最值,分类讨论思想的应用,属于中等题.

解题思路

(1)根据a的取值范围,得到函数在[-1,1]上的单调性,分类讨论证得结论;(2)由题中给出的新定义进行求解.

易错点

二次函数在闭区间上的单调性.

知识点

函数的单调性及单调区间导数的几何意义不等式与函数的综合问题
1
题型:简答题
|
简答题 · 12 分

函数,若曲线在点处的切线与直线垂直(其中为自然对数的底数).

25.若上存在极值,求实数的取值范围;

26.求证:当时,.

第(1)小题正确答案及相关解析

正确答案

解析

因为,由已知,所以,得.所以,当时,为增函数,当时,为减函数.所以是函数的极大值点,又上存在极值,所以

,故实数的取值范围是.

考查方向

本题主要考查利用导数的几何意义,用导数求极值,证明不等式

解题思路

第一问由切线与直线垂直得到切线斜率,再用导数的几何意义求出,通过对讨论,得到它存在极值的范围,找到的取值范围;

第(2)小题正确答案及相关解析

正确答案

略;

解析

等价于.

,则

再令,则

因为,所以,所以上是增函数,

所以,所以,所以上是增函数,

所以时,,故.

因为,所以,所以,所以上是减函数.

所以时,

所以,即.

考查方向

本题主要考查利用导数的几何意义,用导数求极值,证明不等式

解题思路

第二问现将不等式等级变形,构造新函数,对新函数用导函数求最值

1
题型:简答题
|
简答题 · 12 分

已知定义在R上的偶函数,当时,.

25.当时,求过原点与函数图像相切的直线的方程;

26.求最大的整数,使得存在,只要,就有.

第(1)小题正确答案及相关解析

正确答案

(1)

解析

(1):当时,

记过原点与相切的直线为L,设切点坐标为

则切线L斜率为 切线方程为

又切线过(0,0),所以

,切线方程为 ,

为偶函数,图像关于y轴对称,

∴当时,设过原点与相切的直线方程为

 即

考查方向

本题主要考查导数的几何意义和利用导数研究函数的单调性等知识。意在考查考生的综合解决问题的能力和转化与化归的能力。

解题思路

先设切点后利用导数的几何意义求出切点坐标后即得切线方程;

易错点

没有给出切点导致无法入手;

第(2)小题正确答案及相关解析

正确答案

(2)4

解析

(2)因为任意,都有,故x=1时,

时,,从而,∴

时,,从而

,综上 

又整数,即,故,故x=m时,

得:, 即存在,满足

∴  ,即

,则

时,单调递减;

时,单调递增,

由此可见,方程在区间上有唯一解

且当,当

,故,此时.

下面证明:对任意恒成立,

①当时,即,等价于

,∴

②当时,即,等价于

,则上递减,在上递增,

,而

综上所述,对任意恒成立。

考查方向

本题主要考查导数的几何意义和利用导数研究函数的单调性等知识。意在考查考生的综合解决问题的能力和转化与化归的能力。

解题思路

先探求出m的值后证明。

易错点

对于题中给的信息无法处理导致没有思路。

1
题型:简答题
|
简答题 · 14 分

21.已知函数

(I)若函数与函数在点处有共同的切线l,求t的值;

(II)证明:

(III)若不等式对所有的都成立,求实数a的取值范围.

正确答案

见解析

解析

考查方向

本题考察了导函数的几何意义,函数的单调性的判断,考察了函数最值,考察了导数的加法和减法运算,考察了简单复合函数的导函数,考察了函数恒成立问题,考察了函数性质的综合应用,考察了函数的分类讨论思想

解题思路

本题解题思路

1)根据共同的切线的理解得到该点处导函数值与函数值都相等得到t

2)利用单调性确定绝对值内的正负,去掉绝对值号,利用对式子进行证明

3)构造关于m的一次函数,把x当作参数消掉m后再使用恒成立问题的解答得出结果

易错点

本题易错在以下几个方面

1)对共同的切线理解不足,第一问出错

2)不能有效去掉绝对值,使用错的解题思想

3)变量间关系不能有效理清

知识点

函数性质的综合应用导数的运算不等式与函数的综合问题
1
题型:简答题
|
简答题 · 12 分

设函数,曲线在点处的切线方程为.

25.求的解析式;

26.证明:.

第(1)小题正确答案及相关解析

正确答案

(1)的解析式为

解析

试题分析: 本题属于导数的综合应用,考查考生转化与化归数学思想与方法。

(Ⅰ)因为 ,所以 ,所

又点在切线上,所以,所以

所以的解析式为.

考查方向

本题考查了函数与导数的综合应用及不等式的证明

解题思路

(1)利用导数解决曲线的切线问题,从而解出a,b的值

(2)通过构造新函数的方法找到证明不等式的突破口。

易错点

不等式证明如何构造新函数

第(2)小题正确答案及相关解析

正确答案

(2)对任意.

解析

试题分析: 本题属于导数的综合应用,考查考生转化与化归数学思想与方法。

(Ⅱ)令

因为所以当时,

所以在区间内单调递减,所以所以等价于.

我们如果能够证明,即即可证明目标成立.

下面证明:对任意.

由(1)知,令

,所以内单调递增,

,所以存在使得.

时,,此时单调递减;

时,,此时单调递增;

所以.由[

所以.

,则

所以在区间内单调递减,所以

所以.

综上,对任意.

考查方向

本题考查了函数与导数的综合应用及不等式的证明

解题思路

(1)利用导数解决曲线的切线问题,从而解出a,b的值

(2)通过构造新函数的方法找到证明不等式的突破口。

易错点

不等式证明如何构造新函数

1
题型:简答题
|
简答题 · 12 分

已知函数f (x)= +lnx.

25.若函数f(x)在区间[1,e]上的最小值是,求a的值;

26.当a=1时,设F(x)=f(x)+1+,求证:当x>l时,

第(1)小题正确答案及相关解析

正确答案

(1)

解析

(1)因 为,且,则

①当时,,函数单调递增,其最小值为,这与函数在上的最小值是相矛盾;

②当时,函数上有,单调递减,在上有,单调递增,

∴函数的最小值为,得

③当时,,函数上单调递减,其最小值为,与最小值是相矛盾.

综上所述,的值为

考查方向

本题主要考查了函数的最值及不等式的证明,考查考生分类讨论和构造函数的能力。

解题思路

(1)先对函数进行求导,再对参数进行分类讨论探讨函数的单调性从而研究其最小值及此时a的值 ;(2)通过灵活变形构造新函数的方法证明不等式。

易错点

对参数的分类讨论研究函数的最值。

第(2)小题正确答案及相关解析

正确答案

(2)当x>l时,

解析

(2)要证,即证

时,

,则

时,, 递增;当时,, 递减,

处取得唯一的极小值,即为最小值,即,∴

上是增函数,∴当 时,为增函数,

,故. [来源:学科网ZXXK]

,则

, ∴,∴,即上是减函数,

时,,所以,即

所以

考查方向

本题主要考查了函数的最值及不等式的证明,考查考生分类讨论和构造函数的能力。

解题思路

(1)先对函数进行求导,再对参数进行分类讨论探讨函数的单调性从而研究其最小值及此时a的值 ;(2)通过灵活变形构造新函数的方法证明不等式。

易错点

对参数的分类讨论研究函数的最值。

1
题型:填空题
|
填空题 · 5 分

12. 定义在上的奇函数在区间上单调递减,且,则不等式的解集为         .

正确答案

解析

由奇函数在区间上单调递减,所以函数在区间上也单调递减,且

(1)当时,不等式可化为,而,所以成立,符合题意。

(2)当时,不等式可化为,所以

(3)当时,

①当时,不等式可化为,所以

②当时,不等式可化为,所以符合题意。

③当时,不等式可化为,所以取交集为

综上可知,的解集合为

考查方向

本题主要考查函数的奇偶性,抽象函数的图像等知识,意在考查考生分类讨论的思想。

解题思路

1.先利用奇函数求出函数在对称的区间上的单调性;

2.根据x的范围不同分类求出x的解后取并集。

易错点

1.不会奇函数在对称的区间上单调性相同这个结论;

2.分类讨论时不全或重复。

知识点

函数奇偶性的性质函数性质的综合应用不等式与函数的综合问题
1
题型:简答题
|
简答题 · 14 分

已知函数.

27. 判断函数上的单调性;

28. 若恒成立, 求整数的最大值;

29.求证:.

第(1)小题正确答案及相关解析

正确答案

(1)上是减函数;

解析

(Ⅰ)

 上是减函数

考查方向

本题主要考查函数的单调性,函数的最值,恒成立问题的转化,构造新函数,证明不等式等知识,意在考查考生综合解决问题的能力.

解题思路

直接求导后判断出后即可得到答案;

易错点

导后的函数不会变形为,导致不会判断其正负;

第(2)小题正确答案及相关解析

正确答案

3;

解析

(Ⅱ),即的最小值大于.

,则上单调递增,

 ,存在唯一实根, 且满足

时,时,

,故正整数的最大值是3

考查方向

本题主要考查函数的单调性,函数的最值,恒成立问题的转化,构造新函数,证明不等式等知识,意在考查考生综合解决问题的能力.

解题思路

先分离参数后变为,下面求函数的最小值即可;

易错点

第(3)小题正确答案及相关解析

正确答案

(3)略

解析

(Ⅲ)由(Ⅱ)知,∴-

, 则

考查方向

本题主要考查函数的单调性,函数的最值,恒成立问题的转化,构造新函数,证明不等式等知识,意在考查考生综合解决问题的能力.

解题思路

根据第(2)问放缩,然后构造题中给出的不等式即可。

易错点

不会利用放缩法得到,进而导致没有思路求第(3)问。

1
题型:填空题
|
填空题 · 4 分

2.关于x的不等式:<2的解是(        )

正确答案

–1<x<2

解析

解析已在路上飞奔,马上就到!

知识点

不等式与函数的综合问题
百度题库 > 高考 > 理科数学 > 基本不等式及不等式的应用

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题