热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 7 分

在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立坐标系,已知点的极坐标为,直线的极坐标方程为,且点在直线上。

(1)求的值及直线的直角坐标方程;

(2)圆c的参数方程为,(为参数),试判断直线与圆的位置关系。

正确答案

(1) ;(2)直线与圆相交

解析

(1)由点在直线上,可得

所以直线的方程可化为

从而直线的直角坐标方程为

(2)由已知得圆的直角坐标方程为

所以圆心为,半径

以为圆心到直线的距离,所以直线与圆相交

知识点

相等向量与相反向量
1
题型:简答题
|
简答题 · 12 分

平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线交M于A,B两点,P为AB的中点,且OP的斜率为.

(1)求M的方程;

(2)C,D为M上两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值。

正确答案

(1) ; (2)

解析

(1)设A(x1,y1),B(x2,y2),P(x0,y0),

由此可得.

因为x1+x2=2x0,y1+y2=2y0

所以a2=2b2.

又由题意知,M的右焦点为(,0),故a2-b2=3.

因此a2=6,b2=3.

所以M的方程为.

(2)由

解得

因此|AB|=.

由题意可设直线CD的方程为

y=

设C(x3,y3),D(x4,y4)。

得3x2+4nx+2n2-6=0.

于是x3,4.

因为直线CD的斜率为1,

所以|CD|=.

由已知,四边形ACBD的面积.

当n=0时,S取得最大值,最大值为.

所以四边形ACBD面积的最大值为

知识点

相等向量与相反向量
1
题型:简答题
|
简答题 · 15 分

如图,在矩形ABCD中,点E,F分别在线段AB,AD上,AE=EB=AF=沿直线EF将翻折成使平面平面BEF.

(1)求二面角的余弦值;

(2)点M,N分别在线段FD,BC上,若沿直线MN将四边形MNCD向上翻折,使C

重合,求线段FM的长.

正确答案

见解析

解析

(1)

取线段EF的中点H,连结

因为及H是EF的中点,

所以

又因为平面平面BEF,及平面

所以平面BEF。

如图建立空间直角坐标系

为平面的一个法向量

所以

又平面BEF的一个法向量

所以二面角的余弦值为

(2)解:设

因为翻折后,C与A重合,所以CM=

,得

经检验,此时点N在线段BG上,所以

方法二:

(1)解:

取截段EF的中点H,AF的中点G,连结,NH,GH

因为及H是EF的中点,所以H//EF。

又因为平面EF平面BEF,所以H`平面BEF,

平面BEF,

又因为G,H是AF,EF的中点,

易知GH//AB,

所以GH

于是GH

所以为二面角—DF—C的平面角,

中,

所以

故二面角—DF—C的余弦值为

(2)解:设

因为翻折后,G与重合,所以

,得

经检验,此时点N在线段BC上,所以

知识点

相等向量与相反向量
1
题型: 单选题
|
单选题 · 5 分

已知二次函数y=f(x)的图象如图所示,则它与X轴所围图形的面积为  (  )

A

B

C

D

正确答案

B

解析

根据函数的图象可知二次函数y=f(x)图象过点(﹣1,0),(1,0),(0,1)

从而可知二次函数y=f(x)=﹣x2+1

∴它与X轴所围图形的面积为=(=(﹣+1)﹣(﹣1)=

故选B。

知识点

相等向量与相反向量
1
题型:填空题
|
填空题 · 5 分

,则常数T的值为       .

正确答案

3

解析

知识点

相等向量与相反向量
下一知识点 : 向量的加法及其几何意义
百度题库 > 高考 > 理科数学 > 相等向量与相反向量

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题