- 圆锥曲线的综合问题
- 共478题
如图,设椭圆C:动直线
与椭圆C只有一个公共点P,且点P在第一象限.
(1) 已知直线的斜率为
,用
表示点P的坐标;
(2) 若过原点的直线
与
垂直,证明:点
到直线
的距离的最大值为
.
正确答案
见解析
解析
(1)方法1:设直线l的方程为 ,由
,消去y得
由于直线l与椭圆C只有一个公共点P,故△=0,即,解得点P的坐标为
又点P在第一象限,故点P的坐标为
方法2:作变换 ,则椭圆C:
变为圆
:
切点 变为点
,切线
(
变为
。
在圆 中设直线
的方程为
(
) ,
由 解得
即 ,由于
,
所以 ,得
,
即 代入得
即
,
利用逆变换代入即得:
(2)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离
整理得:
因为,所以
当且仅当 时等号成立。
所以,点P到直线 的距离的最大值为
知识点
如图,点是椭圆
的一个顶点,
的长轴是圆
的直径.
是过点
且互相垂直的两条直线,其中
交圆
于两点,
交椭圆
于另一点
(1)求椭圆的方程;
(2)求面积取最大值时直线
的方程.
正确答案
(1)(2)
解析
(1)由已知得到,且
,所以椭圆的方程是
;
(2)因为直线,且都过点
,所以设直线
,直线
,所以圆心
到直线
的距离为
,所以直线
被圆
所截的弦
;
由,所以
,所以
,
当时等号成立,此时直线
知识点
在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为。
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由;
(3)若点M的横坐标为,直线l:y=kx+
与抛物线C有两个不同的交点A,B,l与圆Q有两个不同的交点D,E,求当
≤k≤2时,
的最小值。
正确答案
见解析。
解析
(1)F抛物线C:x2=2py(p>0)的焦点F,设M
,
,由题意可知
,则点Q到抛物线C的准线的距离为
,解得
,于是抛物线
C的方程为
.
(2)假设存在点M,使得直线MQ与抛物线C相切于点M,
而,
,
,
,
,
由可得
,
,则
,
即,解得
,点M的坐标为
.[来源:www.shulihua.net]
(3)若点M的横坐标为,则点M
,
。
由可得
,设
,
圆,
,
于是,令
,
设,
,
当时,
,
即当时
.
故当时,
.
知识点
在直角坐标系xOy中,曲线上的点均在圆
外,且对
上任意一点
,
到直线
的距离等于该点与圆
上点的距离的最小值.
(1)求曲线的方程;
(2)设为圆
外一点,过
作圆
的两条切线,分别与曲线
相交于点
和
.证明:当
在直线
上运动时,四点
的纵坐标之积为定值.
正确答案
见解析
解析
(1)解法1 :设M的坐标为,由已知得
,
易知圆上的点位于直线
的右侧.于是
,所以
.
化简得曲线的方程为
.
解法2 :由题设知,曲线上任意一点M到圆心
的距离等于它到直线
的距离,因此,曲线
是以
为焦点,直线
为准线的抛物线,故其方程为
.
(2)当点P在直线上运动时,P的坐标为
,又
,则过P且与圆
相切得直线的斜率
存在且不为0,每条切线都与抛物线有两个交点,切线方程为
.于是
整理得
①
设过P所作的两条切线的斜率分别为
,则
是方程①的两个实根,故
②
由得
③
设四点A,B,C,D的纵坐标分别为,则是方程③的两个实根,所以
④
同理可得
⑤
于是由②,④,⑤三式得
.
所以,当P在直线上运动时,四点A,B,C,D的纵坐标之积为定值6400.
知识点
如图,椭圆C:(a>b>0)经过点P
,离心率e=
,直线l的方程为x=4.
(1)求椭圆C的方程;
(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由。
正确答案
(1) ; (2) 存在
解析
(1)由P在椭圆上得,
,①
依题设知a=2c,则b2=3c2,②
②代入①解得c2=1,a2=4,b2=3.
故椭圆C的方程为.
(2)方法一:由题意可设AB的斜率为k,
则直线AB的方程为y=k(x-1),③
代入椭圆方程3x2+4y2=12并整理,得(4k2+3)x2-8k2x+4(k2-3)=0.
设A(x1,y1),B(x2,y2),则有
x1+x2=,x1x2=
,④
在方程③中令x=4得,M的坐标为(4,3k)。
从而,
,
.
注意到A,F,B共线,则有k=kAF=kBF,即有.
所以k1+k2=
.⑤
④代入⑤得k1+k2==2k-1,
又k3=,所以k1+k2=2k3.
故存在常数λ=2符合题意。
(2)方法二:设B(x0,y0)(x0≠1),则直线FB的方程为:,
令x=4,求得M,
从而直线PM的斜率为.
联立
得A,
则直线PA的斜率为:,直线PB的斜率为:
,
所以k1+k2==2k3,
故存在常数λ=2符合题意
知识点
在平面直角坐标系中,如图,已知椭圆
的左、右顶点为A、B,右焦点为F。设过点T(
)的直线TA、TB与椭圆分别交于点M
、
,其中m>0,
。
(1)设动点P满足,求点P的轨迹;
(2)设,求点T的坐标;
(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。
正确答案
见解析。
解析
(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。
由,得
化简得
。
故所求点P的轨迹为直线。
(2)将分别代入椭圆方程,以及
得:M(2,
)、N(
,
)
直线MTA方程为:,即
,
直线NTB 方程为:,即
。
联立方程组,解得:,
所以点T的坐标为。
(3)点T的坐标为
直线MTA方程为:,即
,
直线NTB 方程为:,即
。
分别与椭圆联立方程组,同时考虑到
,
解得:、
。
(方法一)当时,直线MN方程为:
令,解得:
。此时必过点D(1,0);
当时,直线MN方程为:
,与x轴交点为D(1,0)。
所以直线MN必过x轴上的一定点D(1,0)。
(方法二)若,则由
及
,得
,
此时直线MN的方程为,过点D(1,0)。
若,则
,直线MD的斜率
,
直线ND的斜率,得
,所以直线MN过D点。
因此,直线MN必过轴上的点(1,0)。
知识点
如图,已知椭圆的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(1)求椭圆和双曲线的标准方程;
(2)设直线、
的斜率分别为
、
,证明
;
(3)是否存在常数,使得
恒成立?若存在,求
的值;若不存在,请说明理由。
正确答案
见解析。
解析
(1)设椭圆的半焦距为,由题意知,
,又
,
所以 ,
,
又,因此
。
故椭圆的标准方程为。
由题意设等轴双曲线的方程因为等轴双曲线的顶点是椭圆的焦点,所以
因此 双曲线的标准方程为。
(2)设,
则 ,
因为 点在双曲线
上,所以
。
因此 ,
即 。
(3)由于的方程为
,将其带入椭圆方程得
,
由根与系数的关系得
所以
。
同理可得。
则 ,
又 ,
所以 。
故。
因此 存在,使
恒成立。
知识点
如图,F1,F2分别是双曲线C:(a,b>0)的左右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M,若|MF2|=|F1F2|,则C的离心率是
正确答案
解析
如图:|OB|=b,|O F1|=c,∴kPQ=,kMN=﹣
。
直线PQ为:y=(x+c),两条渐近线为:y=
x,由
,得:Q(
,
);由
,得:P(
,
),∴直线MN为:y-
=﹣
(x-
),
令y=0得:xM=,又∵|MF2|=|F1F2|=2c,∴3c=xM=
,解之得:
,即e=
。
知识点
如图,是椭圆
与双曲线
的公共焦点,
分别是
,
在第二、四象限的公共点。若四边形
为矩形,则
的离心率是
正确答案
解析
由已知得,设双曲线实半轴为
,由椭圆及双曲线的定义和已知得到:
,所以双曲线的离心率为
,所以选D
知识点
如图,椭圆C:(a>b>0)的离心率为
,其左焦点到点P(2,1)的距离为
,不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分。
(1)求椭圆C的方程;
(2) 求ABP的面积取最大时直线l的方程。
正确答案
(1) ;(2) y=﹣
。
解析
(1)由题:; (1)
左焦点(﹣c,0)到点P(2,1)的距离为:。 (2)
由(1) (2)可解得:。
∴所求椭圆C的方程为:。
(2)易得直线OP的方程:y=x,设A(xA,yA),B(xB,yB),R(x0,y0),其中y0=
x0。
∵A,B在椭圆上,
∴。
设直线AB的方程为l:y=﹣(m≠0),
代入椭圆:。
显然。
∴﹣<m<
且m≠0。
由上又有:=m,
=
。
∴|AB|=|
|=
=
。
∵点P(2,1)到直线l的距离为:。
∴SABP=
d|AB|=
|m+2|
,
当|m+2|=,即m=﹣3 or m=0(舍去)时,(S
ABP)max=
。
此时直线l的方程y=﹣。
知识点
扫码查看完整答案与解析