- 圆锥曲线的综合问题
- 共478题
如图,点是椭圆
的一个顶点,
的长轴是圆
的直径.
是过点
且互相垂直的两条直线,其中
交圆
于两点,
交椭圆
于另一点
(1)求椭圆的方程;
(2)求面积取最大值时直线
的方程.
正确答案
见解析。
解析
(1)由已知得到,且
,所以椭圆的方程是
;
(2)因为直线,且都过点
,所以设直线
,直线
,所以圆心
到直线
的距离为
,所以直线
被圆
所截的弦
;
由,所以
,所以
,
当时等号成立,此时直线
知识点
已知圆,圆
,动圆
与
外切并且与圆
内切,圆心
的轨迹为曲线 C.
(1)求C的方程;
(2)是与圆
,圆
都相切的一条直线,
与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
正确答案
见解析
解析
由已知得圆的圆心为
(-1,0),半径
=1,圆
的圆心为
(1,0),半径
=3.
设动圆的圆心为
(
,
),半径为R.
(1)∵圆与圆
外切且与圆
内切,∴|PM|+|PN|=
=
=4,
由椭圆的定义可知,曲线C是以M,N为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为
.
(2)对于曲线C上任意一点(
,
),由于|PM|-|PN|=
≤2,∴R≤2,
当且仅当圆P的圆心为(2,0)时,R=2.
∴当圆P的半径最长时,其方程为,
当的倾斜角为
时,则
与
轴重合,可得|AB|=
.
当的倾斜角不为
时,由
≠R知
不平行
轴,设
与
轴的交点为Q,则
=
,可求得Q(-4,0),∴设
,由
于圆M相切得
,解得
.
当=
时,将
代入
并整理得
,解得
=
,∴|AB|=
=
.
当=-
时,由图形的对称性可知|AB|=
,
综上,|AB|=或|AB|=
.
知识点
如果函数y的图像与曲线
恰好有两个不同的公共点,则实数
的 取值范围是 ( )
正确答案
解析
数形结合,分类讨论。
①当时,曲线
表示两条平行直线
,与曲线y
有两个公共点;
②当时,曲线
表示圆
,与曲线y
有三个公共点
③当时,曲线
表示焦点在
轴上的椭圆
,与曲线y
有两个公共点;
④当时,曲线
表示焦点在
轴上的椭圆
,与曲线y
有四个公共点;
⑤当时,曲线
表示焦点在
轴上的双曲线
,考虑双曲线的渐近线,当
时与曲线y
有两个个公共点;所以
答案选A
知识点
已知中心在原点,左焦点为
的椭圆
的左顶点为
,上顶点为
,
到直线
的距离为
.
(1) 求椭圆的方程;
(2) 过点作直线
,使其交椭圆
于
、
两点,交直线
于
点. 问:是否存在这样的直线
,使
是
、
的等比中项?若存在,求出直线
的方程;若不存在,说明理由。
(3) 若椭圆方程为:
(
),椭圆
方程为:
(
,且
),则称椭圆
是椭圆
的
倍相似椭圆.已知
是椭圆
的
倍相似椭圆,若直线
与两椭圆
、
交于四点(依次为
、
、
、
),且
,试研究动点
的轨迹方程。
正确答案
(1)(2)存在(3)
解析
(1)设椭圆方程为:
(
),
所以直线方程为:
∴到直线
距离为
又,解得:
,
故:椭圆方程为:
.
(2) 当直线与
轴重合时,
,而
,所以
若存在直线,使
是
、
的等比中项,
则可设直线方程为:
代人椭圆的方程,得:
即:
∴
记,
,
∴
,
∵,即
,∴
∴,解得:
,符合
,所以
故存在直线,使
是
、
的等比中项,其方程为
,即:
(3) 椭圆的
倍相似椭圆
的方程为:
设、
、
、
各点坐标依次为
、
、
、
将代人椭圆
方程,得:
∴ (*)
此时:,
将代人椭圆
方程,得:
∴,
∴,可得线段
、
中点相同,所以
由,所以
,可得:
∴(满足(*)式)。
故:动点的轨迹方程为
.
知识点
如图7,直线,抛物线
,已知点
在抛
物线上,且抛物线
上的点到直线
的距离的最小值为
。
(1)求直线及抛物线
的方程;
(2)过点的任一直线(不经过点
)与抛物线
交于
、
两点,直线
与直线
相交于点
,记直线
,
,
的斜率分别为
,
,
,问:是否存在实数
,使得
?若存在,试求出
的值;若不存在,请说明理由。
正确答案
见解析。
解析
(1)(法一)点
在抛物线
上,
。
设与直线平行且与抛物线
相切的直线
方程为
,
由 得
,
,
由
,得
,则直线
方程为
。
两直线
、
间的距离即为抛物线
上的点到直线
的最短距离,
有
,解得
或
(舍去)。
直线
的方程为
,抛物线
的方程为
。
(法二)点
在抛物线
上,
,抛物线
的方程为
。……2分
设为抛物线
上的任意一点,点
到直线
的距离为
,根据图象,有
,
,
,
的最小值为
,由
,解得
。
因此,直线的方程为
,抛物线
的方程为
。
(2)直线
的斜率存在,
设直线
的方程为
,即
,
由 得
,
设点、
的坐标分别为
、
,则
,
,
,
,
.
由 得
,
,
,
。
因此,存在实数,使得
成立,且
。
知识点
已知点,
的坐标分别为
,
.直线
,
相交于点
,且它们的斜率之积是
,记动点
的轨迹为曲线
.
(1)求曲线的方程;
(2)设是曲线
上的动点,直线
,
分别交直线
于点
,线段
的中点为
,求直线
与直线
的斜率之积的取值范围;
(3)在(2)的条件下,记直线与
的交点为
,试探究点
与曲线
的位置关系,并说明理由。
正确答案
见解析。
解析
(1)设动点,则
(
且
)
所以曲线的方程为
(
).
(2)法一:设,则直线
的方程为
,令
,则得
,直线
的方程为
,
令,则得
,
∵ =
∴,∴
故
∵ ,∴
,
∴,
∴,
∴直线与直线
的斜率之积的取值范围为
法二:设直线的斜率为
,则由题可得直线
的斜率为
,
所以直线的方程为
,令
,则得
,
直线的方程为
,令
,则得
,
∴,
∴
故
∴直线与直线
的斜率之积的取值范围为
(3)法一:由(2)得,
,
则直线的方程为
,直线
的方程为
,…12分
由,解得
即
∴
∴ 点在曲线
上.
法二:由(2)得,
∴ ,
∴
∴ 点在曲线
上。
法三:由(2)得,,
,
∴ ,
∴ ∴ 点
在曲线
上.
知识点
已知定点,
,动
点
,且满足
成等差数列。
(1)求点的轨迹
的方程;
(2)若曲线的方程为
(
),过点
的直线
与曲线
相切,求直线
被曲线
截得的线段长的最小值。
正确答案
见解析。
解析
(1)由,
,
根据椭圆定义知的轨迹为以
为焦点的椭圆,
其长轴,焦距
,短半轴
,故
的方程为
.
(2)过点与X轴垂直的直线不与圆
相切,故可设
:
,由直线
与曲线
相切得,化简得
由,解得
联立,消去
整理得
,
直线被曲线
截得的线段一端点为
,设另一端点为
,解方程可得
,有
令,则
,
考查函数的性质知
在区间
上是增函数,
所以时,
取最大值
,从而
.
知识点
已知椭圆的长轴长是焦距的两倍,其左、右焦点依次为
、
,抛物线
的准线与
轴交于
,椭圆
与抛物线
的一个交点为
.
(1)当时, ①求椭圆
的方程;②直线
过焦点
,与抛物线
交于
两点,若弦长
等于
的周长,求直线
的方程;
(2)是否存在实数,使得
的边长为连续的自然数.
正确答案
(1)(2)
解析
(1)①设椭圆的实半轴长为a,短半轴长为b,半焦距为c,
当=1时,由题意得,a=2c=2,
,
所以椭圆的方程为.
②依题意知直线的斜率存在,设
,由
得,
,由直线
与抛物线
有两个交点,可知
.
设,由韦达定理得
,
则=
因为的周长为
,所以
,
解得,从而可得直线
的方程为
(2)假设存在满足条件的实数,由题意得
,又设
,设
,对于抛物线M,有
对于椭圆C,由
得
由解得:
,所以
,从而
,因此,
的边长分别为
、
、
,
当时,使得
的边长为连续的自然数.
知识点
已知椭圆C1的中心在坐标原点,两个焦点分别为,点A(2,3)在椭圆C1上,过点A的直线L与抛物线
交于B,C两点,抛物线C2在点B,C处的切线分别为
,且
与
交于点P.
(1)求椭圆C1的方程;
(2)是否存在满足的点P?若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由。
正确答案
见解析。
解析
(1)解法1:设椭圆的方程为
,
依题意: 解得:
∴ 椭圆的方程为
.
解法2:设椭圆的方程为
,
根据椭圆的定义得,即
,
∵, ∴
.
∴ 椭圆的方程为
.
(2)解法1:设点,
,则
,
,
∵三点共线,
∴.
∴,
化简得:. ①
由,即
得
.
∴抛物线在点
处的切线
的方程为
,即
. ②
同理,抛物线在点
处的切线
的方程为
. ③
设点,由②③得:
,
而,则
.
代入②得 ,
则,
代入 ① 得
,即点
的轨迹方程为
.
若 ,则点
在椭圆
上,而点
又在直线
上,
∵直线经过椭圆
内一点
,
∴直线与椭圆
交于两点.
∴满足条件 的点
有两个.
解法2:设点,
,
,
由,即
得
.
∴抛物线在点
处的切线
的方程为
,
即.
∵, ∴
。
∵点在切线
上, ∴
. ①
同理, . ②
综合①、②得,点的坐标都满足方程
.
∵经过的直线是唯一的,
∴直线的方程为
,
∵点在直线
上, ∴
.
∴点的轨迹方程为
.
若 ,则点
在椭圆
上,又在直线
上,
∵直线经过椭圆
内一点
,
∴直线与椭圆
交于两点.
∴满足条件 的点
有两个.
解法3:显然直线的斜率存在,设直线
的方程为
,
由消去
,得
.
设,则
.
由,即
得
.
∴抛物线在点
处的切线
的方程为
,即
.…7分
∵, ∴
.
同理,得抛物线在点
处的切线
的方程为
.
由解得
∴.
∵,
∴点在椭圆
上.
∴.
化简得.(*)
由,
可得方程(*)有两个不等的实数根. ∴满足条件的点有两个.
知识点
设椭圆的离心率为
,其左焦点
与抛物线
的焦点相同.(Ⅰ)求此椭圆的方程;(Ⅱ)若过此椭圆的右焦点
的直线
与曲线
只有一个交点
,则
(1)求直线的方程;
(2)椭圆上是否存在点,使得
,若存在,请说明一共有几个点;若不存在,请说明理由。
正确答案
见解析。
解析
(1)抛物线的焦点为
,它是题设椭圆的左焦点.离心率为
,
所以,.由
求得
.
因此,所求椭圆的方程为 (*)
(2)椭圆的右焦点为,过点
与
轴平行的直线显然与曲线
没有交点.设直线
的斜率为
,
① 若,则直线
过点
且与曲线
只有一个交点
,此时直线
的方程为;
② 若,因直线
过点
,故可设其方程为
,将其代入
消去
,得
.因为直线
与曲线
只有一个交点
,所以判别式
,于是
,从而直线
的方程为
或
.因此,所求的直线
的方程为
或
或
.
可求出点的坐标是
或
或
.
①若点的坐标是
,则
.于是
=
,从而
,代入(*)式联立:
或
,求得
,此时满足条件的点
有4个:
.
②若点的坐标是
,则
,点M到直线
:
的距离是
,
于是有,从而
,
与(*)式联立:或
解之,可求出满足条件的点
有4个:
,
,
,
.
③ 若点的坐标是
,则
,点
到直线
:
的距离是
,于是有
,从而
,
与(*)式联立:或
,解之,可求出满足条件的点
有4个:
,
,
,
.
综合①②③,以上12个点各不相同且均在该椭圆上,因此,满足条件的点共有12个.图上椭圆上的12个点即为所求。
知识点
扫码查看完整答案与解析