热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

如图,点是椭圆的一个顶点,的长轴是圆的直径.是过点且互相垂直的两条直线,其中交圆于两点,交椭圆于另一点

(1)求椭圆的方程;

(2)求面积取最大值时直线的方程.

正确答案

见解析。

解析

(1)由已知得到,且,所以椭圆的方程是;

(2)因为直线,且都过点,所以设直线,直线,所以圆心到直线的距离为,所以直线被圆所截的弦;

,所以

,所以

,

时等号成立,此时直线

知识点

椭圆的定义及标准方程直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

已知圆,圆,动圆外切并且与圆内切,圆心的轨迹为曲线 C.

(1)求C的方程;

(2)是与圆,圆都相切的一条直线,与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

正确答案

见解析

解析

由已知得圆的圆心为(-1,0),半径=1,圆的圆心为(1,0),半径=3.

设动圆的圆心为(,),半径为R.

(1)∵圆与圆外切且与圆内切,∴|PM|+|PN|===4,

由椭圆的定义可知,曲线C是以M,N为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为.

(2)对于曲线C上任意一点(,),由于|PM|-|PN|=≤2,∴R≤2,

当且仅当圆P的圆心为(2,0)时,R=2.

∴当圆P的半径最长时,其方程为,

的倾斜角为时,则轴重合,可得|AB|=.

的倾斜角不为时,由≠R知不平行轴,设轴的交点为Q,则=,可求得Q(-4,0),∴设,由于圆M相切得,解得.

=时,将代入并整理得,解得=,∴|AB|==.

=-时,由图形的对称性可知|AB|=,

综上,|AB|=或|AB|=.

知识点

定义法求轨迹方程直线、圆及圆锥曲线的交汇问题
1
题型: 单选题
|
单选题 · 5 分

如果函数y的图像与曲线恰好有两个不同的公共点,则实数的 取值范围是                                                (   )

A

B

C

D

正确答案

A

解析

数形结合,分类讨论。

①当时,曲线表示两条平行直线,与曲线y有两个公共点;

②当时,曲线表示圆,与曲线y有三个公共点

③当时,曲线表示焦点在轴上的椭圆,与曲线y有两个公共点;

④当时,曲线表示焦点在轴上的椭圆,与曲线y有四个公共点;

⑤当时,曲线表示焦点在轴上的双曲线,考虑双曲线的渐近线,当时与曲线y有两个个公共点;所以答案选A

知识点

直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 16 分

已知中心在原点,左焦点为的椭圆的左顶点为,上顶点为到直线的距离为.

(1) 求椭圆的方程;

(2) 过点作直线,使其交椭圆两点,交直线点. 问:是否存在这样的直线,使的等比中项?若存在,求出直线的方程;若不存在,说明理由。

(3) 若椭圆方程为:),椭圆方程为:,且),则称椭圆是椭圆倍相似椭圆.已知是椭圆倍相似椭圆,若直线与两椭圆交于四点(依次为),且,试研究动点的轨迹方程。

正确答案

(1)(2)存在(3)

解析

(1)设椭圆方程为:),

所以直线方程为:

到直线距离为

,解得:

故:椭圆方程为:.

(2) 当直线轴重合时,,而,所以

若存在直线,使的等比中项,

则可设直线方程为:

代人椭圆的方程,得:即:

   ∴

,即,∴

,解得:,符合,所以

故存在直线,使的等比中项,其方程为

,即:

(3) 椭圆倍相似椭圆的方程为:

各点坐标依次为

代人椭圆方程,得:

     (*)

此时:

代人椭圆方程,得:

,可得线段中点相同,所以

,所以,可得:

(满足(*)式)。

故:动点的轨迹方程为.

知识点

椭圆的定义及标准方程圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

如图7,直线,抛物线,已知点在抛

物线上,且抛物线上的点到直线的距离的最小值为

(1)求直线及抛物线的方程;

(2)过点的任一直线(不经过点)与抛物线交于两点,直线与直线相交于点,记直线的斜率分别为,问:是否存在实数,使得?若存在,试求出的值;若不存在,请说明理由。

正确答案

见解析。

解析

(1)(法一)在抛物线上,

设与直线平行且与抛物线相切的直线方程为

 得

,得,则直线方程为

两直线间的距离即为抛物线上的点到直线的最短距离,

,解得(舍去)。

直线的方程为,抛物线的方程为

(法二)在抛物线上, ,抛物线的方程为。……2分

为抛物线上的任意一点,点到直线的距离为,根据图象,有

的最小值为,由,解得

因此,直线的方程为,抛物线的方程为

(2)直线的斜率存在,设直线的方程为,即

  得

设点的坐标分别为,则

.

 得

因此,存在实数,使得成立,且

知识点

直线的一般式方程抛物线的标准方程和几何性质圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

已知点的坐标分别为.直线相交于点,且它们的斜率之积是,记动点的轨迹为曲线.

(1)求曲线的方程;

(2)设是曲线上的动点,直线分别交直线于点,线段的中点为,求直线与直线的斜率之积的取值范围;

(3)在(2)的条件下,记直线的交点为,试探究点与曲线的位置关系,并说明理由。

正确答案

见解析。

解析

(1)设动点,则()

所以曲线的方程为().

(2)法一:设,则直线的方程为,令,则得,直线的方程为

,则得

=

,∴

∵  ,∴

∴,

∴直线与直线的斜率之积的取值范围为

法二:设直线的斜率为,则由题可得直线的斜率为

所以直线的方程为,令,则得

直线的方程为,令,则得

∴直线与直线的斜率之积的取值范围为

(3)法一:由(2)得

则直线的方程为,直线的方程为,…12分

,解得

∴  点在曲线上.

法二:由(2)得

∴   ,

∴  点在曲线上。

法三:由(2)得,

∴   ,

  ∴  点在曲线上.

知识点

直线的倾斜角与斜率直接法求轨迹方程直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知定点,,动,且满足成等差数列。

(1)求点的轨迹的方程;

(2)若曲线的方程为(),过点的直线与曲线相切,求直线被曲线截得的线段长的最小值。

正确答案

见解析。

解析

(1)由,,

根据椭圆定义知的轨迹为以为焦点的椭圆,

其长轴,焦距,短半轴,故的方程为.

(2)过点与X轴垂直的直线不与圆相切,故可设:,由直线与曲线

相切得,化简得

,解得

联立,消去整理得,

直线被曲线截得的线段一端点为,设另一端点为,解方程可得,有

,则,

考查函数的性质知在区间上是增函数,

所以时,取最大值,从而.

知识点

等差数列的性质及应用直接法求轨迹方程直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 16 分

已知椭圆的长轴长是焦距的两倍,其左、右焦点依次为,抛物线的准线与轴交于,椭圆与抛物线的一个交点为.

(1)当时, ①求椭圆的方程;②直线过焦点,与抛物线交于两点,若弦长等于的周长,求直线的方程;

(2)是否存在实数,使得的边长为连续的自然数.

正确答案

(1)(2)

解析

(1)①设椭圆的实半轴长为a,短半轴长为b,半焦距为c,

=1时,由题意得,a=2c=2,,

所以椭圆的方程为.

②依题意知直线的斜率存在,设,由得,

,由直线与抛物线有两个交点,可知.

,由韦达定理得

=            

因为的周长为,所以,          

解得,从而可得直线的方程为        

(2)假设存在满足条件的实数,由题意得,又设,设,对于抛物线M,有对于椭圆C,由   

解得:,所以,从而,因此,的边长分别为

时,使得的边长为连续的自然数.     

知识点

直线的一般式方程椭圆的定义及标准方程圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

已知椭圆C1的中心在坐标原点,两个焦点分别为,点A(2,3)在椭圆C1上,过点A的直线L与抛物线交于B,C两点,抛物线C2在点B,C处的切线分别为,且交于点P.

(1)求椭圆C1的方程;

(2)是否存在满足的点P?若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由。

正确答案

见解析。

解析

(1)解法1:设椭圆的方程为,

依题意:    解得:

∴ 椭圆的方程为.

解法2:设椭圆的方程为

根据椭圆的定义得,即

,  ∴.

∴ 椭圆的方程为.

(2)解法1:设点,,则

三点共线,

.

,

化简得:.  ①

,即.

∴抛物线在点处的切线的方程为,即. ②

同理,抛物线在点处的切线的方程为 .     ③

设点,由②③得:

,则 .

代入②得

代入 ① 得 ,即点的轨迹方程为.

 ,则点在椭圆上,而点又在直线上,

∵直线经过椭圆内一点,

∴直线与椭圆交于两点.

∴满足条件 的点有两个.

解法2:设点,

,即.

∴抛物线在点处的切线的方程为

.

, ∴ 。

∵点在切线上,   ∴.        ①

同理, .  ②

综合①、②得,点的坐标都满足方程.

∵经过的直线是唯一的,

∴直线的方程为

∵点在直线上,      ∴.

∴点的轨迹方程为.

 ,则点在椭圆上,又在直线上,

∵直线经过椭圆内一点,

∴直线与椭圆交于两点.

∴满足条件 的点有两个.

解法3:显然直线的斜率存在,设直线的方程为

消去,得.

,则.

,即.

∴抛物线在点处的切线的方程为,即.…7分

, ∴.

同理,得抛物线在点处的切线的方程为.

解得

.

,

∴点在椭圆上.

.

化简得.(*)

,

可得方程(*)有两个不等的实数根.  ∴满足条件的点有两个.

知识点

椭圆的定义及标准方程抛物线的标准方程和几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

设椭圆的离心率为,其左焦点与抛物线的焦点相同.(Ⅰ)求此椭圆的方程;(Ⅱ)若过此椭圆的右焦点的直线与曲线只有一个交点,则

(1)求直线的方程;

(2)椭圆上是否存在点,使得,若存在,请说明一共有几个点;若不存在,请说明理由。

正确答案

见解析。

解析

(1)抛物线的焦点为,它是题设椭圆的左焦点.离心率为

所以,.由求得.

因此,所求椭圆的方程为  (*)

(2)椭圆的右焦点为,过点轴平行的直线显然与曲线没有交点.设直线的斜率为

①  若,则直线过点且与曲线只有一个交点,此时直线

的方程为

②  若,因直线过点,故可设其方程为,将其代入

消去,得.因为直线与曲线只有一个交点,所以判别式,于是,从而直线的方程为.因此,所求的直线的方程为.

可求出点的坐标是.

①若点的坐标是,则.于是=,从而,代入(*)式联立:

,求得,此时满足条件的点有4个:

.

②若点的坐标是,则,点M到直线的距离是

于是有,从而

与(*)式联立:解之,可求出满足条件的点有4个:.

③  若点的坐标是,则,点到直线:的距离是,于是有,从而

与(*)式联立:,解之,可求出满足条件的点有4个:  ,,.

综合①②③,以上12个点各不相同且均在该椭圆上,因此,满足条件的点共有12个.图上椭圆上的12个点即为所求。

知识点

直线的一般式方程椭圆的定义及标准方程圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 理科数学 > 圆锥曲线的综合问题

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题