热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 14 分

设双曲线C:(a>0,b>0)的一个焦点坐标为(,0),离心率, A、B是双曲线上的两点,AB的中点M(1,2)。

(1)求双曲线C的方程;

(2)求直线AB方程;

(3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?

正确答案

见解析。

解析

(1)依题意得,解得a=1.

所以

故双曲线C的方程为.

(2)设,则有 。

两式相减得: ,

由题意得

所以,即.

故直线AB的方程为.

(3)假设A、B、C、D四点共圆,且圆心为P. 因为AB为圆P的弦,所以圆心P在AB垂直平分线CD上;又CD为圆P的弦且垂直平分AB,故圆心P为CD中点M.

下面只需证CD的中点M满足|MA|=|MB|=|MC|=|MD|即可。

得:A(-1,0),B(3,4).

由(1)得直线CD方程:

得:C(-3+,6-),D(-3-,6+),

所以CD的中点M(-3,6).

因为

所以

即 A、B、C、D四点在以点M(-3,6)为圆心,为半径的圆上.

知识点

直线的一般式方程双曲线的定义及标准方程直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 16 分

如图,已知平面内一动点到两个定点的距离之和为,线段的长为

(1)求动点的轨迹

(2)当时,过点作直线与轨迹交于两点,且点在线段的上方,线段的垂直平分线为

①求的面积的最大值;

②轨迹上是否存在除以外的两点关于直线对称,请说明理由。

正确答案

见解析

解析

(1)当时,轨迹是以为焦点的椭圆

时,轨迹是线段

时,轨迹不存在

(2)以线段的中点为坐标原点,以所在直线为轴建立平面直角坐标系,

可得轨迹的方程为

①解法1:设表示点到线段的距离

要使的面积有最大值,只要有最大值

当点与椭圆的上顶点重合时,

的最大值为

解法2:在椭圆中,设,记

在椭圆上,由椭圆的定义得:

中,由余弦定理得:

配方,得:

从而

根据椭圆的对称性,当最大时,最大

当点与椭圆的上顶点重合时,

最大值为

②结论:当时,显然存在除外的两点关于直线对称

下证当不垂直时,不存在除外的两点关于直线对称

证法1:假设存在这样的两个不同的点

设线段的中点为   直线

由于上,故        ①

在椭圆上,所以有

两式相减,得

将该式写为

并将直线的斜率和线段的中点,表示代入该表达式中,

     ②

①、②得,由(1)代入

的中点为点,而这是不可能的.

此时不存在满足题设条件的点.

证法2:假设存在这样的两个不同的点

,故直线经过原点。

直线的斜率为,则假设不成立,

故此时椭圆上不存在两点(除了点、点外)关于直线对称

知识点

定义法求轨迹方程圆锥曲线中的范围、最值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

已知椭圆C的中点在原点,焦点在轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.

(1)求椭圆C的方程;

(2)已知点在椭圆上,点A、B是椭圆上不同的两个动点,且满足,试问直线AB的斜率是否为定值,请说明理由.

正确答案

见解析。

解析

知识点

直线的倾斜角与斜率椭圆的定义及标准方程抛物线的标准方程和几何性质圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”,若椭圆的一个焦点为,其短轴上的一个端点到的距离为

(1)求椭圆的方程和其“准圆”方程;

(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点

(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程并证明

(ⅱ)求证:线段的长为定值。

正确答案

见解析

解析

(1)

椭圆方程为,………………………………2分

准圆方程为,………………………………3分

(2)(ⅰ)因为准圆轴正半轴的交点为

设过点且与椭圆相切的直线为

所以由

因为直线与椭圆相切,

所以,解得,………………………………6分

所以方程为,………………………………7分

,………………………………8分

(ⅱ)①当直线中有一条斜率不存在时,不妨设直线斜率不存在,

时,与准圆交于点

此时(或),显然直线垂直;

同理可证当时,直线垂直,………………………………10分

②当斜率存在时,设点,其中

设经过点与椭圆相切的直线为

所以由

化简整理得

因为,所以有

的斜率分别为,因为与椭圆相切,

所以满足上述方程

所以,即垂直,………………………………12分

综合①②知:因为经过点,又分别交其准圆于点,且垂直。

所以线段为准圆的直径,

所以线段的长为定值,………………………………14分

知识点

椭圆的定义及标准方程椭圆的几何性质圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

在直角坐标系xOy中,椭圆C1的左、右焦点分别为F1、F2.其中F2也是抛物线C2的焦点,点M为C1与C2在第一象限的交点,且.

(1)求C1的方程;

(2)平面上的点N满足,直线l∥MN,且与C1交于A、B两点,若·=0,求直线l的方程.

正确答案

(1)椭圆的方程为

(2)直线的方程为,或

解析

(1)由,……………………………………………1分

上,因为,所以

,………………………………………………………………… 3分

上,且椭圆的半焦距,于是………………………5分

消去并整理得  , 解得不合题意,舍去)。

故椭圆的方程为。  ………………………………………………… 7分

(2)由知四边形是平行四边形,其中心为坐标原点

因为,所以的斜率相同,

的斜率

的方程为,……………………………………………………… 8分

  ………………………………………………………………… 9分

消去并化简得  ,…………………………………… 10分

.……………………11分

因为,所以

 ,……………… 12分

所以,此时

故所求直线的方程为,或。 …………………… 14分

知识点

向量在几何中的应用椭圆的定义及标准方程抛物线的标准方程和几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

已知椭圆的左右焦点分别为,点为短轴的一个端点,

(1)求椭圆的方程;

(2)如图,过右焦点,且斜率为的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为

求证: 为定值。

正确答案

见解析

解析

(1)由条件可知,                                  …………2分

故所求椭圆方程为,                              …………4分

(2)设过点的直线方程为:,                  …………5分

可得:        …………6分

因为点在椭圆内,所以直线和椭圆都相交,即恒成立。

设点,则

,                     …………8分

因为直线的方程为:

直线的方程为:,                  ………9分

,可得

所以点的坐标,                     ………10分

直线的斜率为

          …………12分

所以为定值,                                 …………13分

知识点

直线的倾斜角与斜率椭圆的定义及标准方程直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

以椭圆的中心O为圆心,为半径的圆称为该椭圆的“准圆”.设椭圆C的左顶点为P,左焦点为F,上顶点为Q,且满足.

(1)求椭圆C及其“准圆”的方程;

(2)若椭圆C的“准圆”的一个弦ED(不与坐标轴垂直)与椭圆C交于M、N两点,试证明:当时,试问弦ED的长是否为定值,若是,求出该定值;若不是,请说明理由.

正确答案

见解析

解析

知识点

椭圆的定义及标准方程圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

如图6,圆,P是圆C上的任意一动点,A点坐标为(2,0),线段PA的垂直平分线l与半径CP交于点Q.

(1)求点Q的轨迹G的方程;

(2)已知B,D是轨迹G上不同的两个任意点,M为BD的中点. ①若M的坐标为M

(2,1),求直线BD所在的直线方程;②若BD不经过原点,且不垂直于x轴,点O为轨迹G的中心. 求证:直线BD和直线OM的斜率之积是常数(定值).

正确答案

见解析。

解析

(1)圆C的圆心为C(-2,0),半径r=6,.

连结,由已知得

所以.

根据椭圆的定义,点Q的轨迹G是中心在原点,以C、A为焦点,长轴长等于的椭圆,

即a=3,c=2,

所以,点Q的轨迹G的方程为.

(2)①设B、D的坐标分别为

两式相减,得

当BD的中点M的坐标为(2,1)时,有

所以,即.

故BD所在的直线方程为,即.

②证明:设,且

由①可知,

所以(定值).

知识点

相关点法求轨迹方程直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

已知椭圆E:与直线交于A,B两点,O为坐标原点。

(1)若直线l椭圆的左焦点,且k=1,求△ABC的面积;

(2)若,且直线l与圆O:相切,求圆O的半径r的值。

正确答案

见解析

解析

知识点

椭圆的几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线;设为曲线上的一个不在轴上的动点,为坐标原点,过点的平行线交曲线两个不同的点。

(1)求曲线的方程;

(2)试探究的比值能否为一个常数?若能,求出这个常数;若不能,请说明理由;

(3)记的面积为的面积为,令,求的最大值。

正确答案

见解析。

解析

(1)设圆心的坐标为,半径为

由于动圆与圆相切,且与圆相内切,所以动

与圆只能内切

 ………………………………………2分

圆心的轨迹为以为焦点的椭圆,其中

故圆心的轨迹 …………………………………………………………4分

(2)设,直线,则直线

可得:

 ……………………………6分

可得:

………………………………8分

的比值为一个常数,这个常数为……………………………………9分

(3)的面积的面积,

到直线的距离

 …………………………11分

,则

(当且仅当,即,亦即时取等号)

时,取最大值……………………………………………………13分

知识点

定义法求轨迹方程圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 理科数学 > 圆锥曲线的综合问题

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题