- 圆锥曲线的综合问题
- 共478题
已知椭圆的一个顶点为,焦点在
轴上,中心在原点,若右焦点到直线
的距离为3。
(1)求椭圆的标准方程;
(2)设直线与椭圆相交于不同的两点
,当
时,求
的取值范围。
正确答案
见解析。
解析
(1)依题意可设椭圆方程为 ,则右焦点
,
由题设,解得
,
故所求椭圆的方程为。
设,P为弦MN的中点,
由 得
,
直线与椭圆相交,
,①
,从而
,
,又
,则:
,即
, ②
把②代入①得 ,解得
,
由②得,解得
。
综上求得的取值范围是
。
知识点
已知椭圆:
(
)过点
,其左、右焦点分别为
,且
。
(1)求椭圆的方程;
(2)若是直线
上的两个动点,且
,则以
为直径的圆
是否过定点?请说明理由。
正确答案
见解析
解析
(1)设点的坐标分别为
,
则
故,可得
, …………………2分
所以,…………………4分
故,
所以椭圆的方程为
, ……………………………6分
(2)设的坐标分别为
,则
,
又,可得
,即
, …………………8分
又圆的圆心为
半径为
,
故圆的方程为
,
即,
也就是, ……………………11分
令,可得
或2,
故圆必过定点
和
, ……………………13分
(另法:(1)中也可以直接将点坐标代入椭圆方程来进行求解;(2)中可利用圆C直径的两端点直接写出圆
的方程)
知识点
已知定点,直线
,点
为坐标平面上的动点,过点
作直线
的垂线,垂足为点
,且
,设动点
的轨迹为曲线
。
(1)求曲线的方程;
(2)过点的直线
与曲线
有两个不同的交点
、
,求证:
;
(3)记与
的夹角为
(
为坐标原点,
、
为(2)中的两点),求
的取值范围。
正确答案
见解析
解析
(1)设点的坐标为
。 (1分)
由题意,可得,
,
,
,(3分)
由与
垂直,得
,即
(
)。 (6分)
因此,所求曲线的方程为
(
)。
(2)因为过点的直线
与曲线
有两个不同的交点
、
,所以
的斜率不为零,故设直线
的方程为
。 (7分)
于是、
的坐标
、
为方程组
的实数解。
消并整理得
, (8分)
于是进一步得
(10分)
又因为曲线(
)的准线为
,
所以,得证。 (12分)
(3)由(2)可知,,
。
于是,
(16分)可求得的取值范围为
。 (18分)
知识点
在平面直角坐标系中,为坐标原点,已知曲线
上任意一点
(其中
)到定点
的距离比它到
轴的距离大1.
(1)求曲线的轨迹方程;
(2)若过点的直线
与曲线
相交于不同的
两点,求
的值;
(3)若曲线上不同的两点
、
满足
求
的取值范围。
正确答案
见解析
解析
(1)依题意知,动点到定点
的距离等于
到直线
的距离,曲线
是
以原点为顶点,为焦点的抛物线………(2分)
∵
∴
∴ 曲线方程是
………(4分)
(2)当平行于
轴时,其方程为
,由
解得
、
此时 ………(6分)
当不平行于
轴时,设其斜率为
,
则由 得
设则有
,
………(8分)
∴
………(10分)
(3)设
∴ ………(12分)
∵
∴
∵,化简得
∴ ………(14分)
当且仅当 时等号成立
∵
∴当的取值范围是
………(16分)
知识点
已知椭圆的左右焦点分别是
,直线
与椭圆
交于两点
且当
时,M是椭圆
的上顶点,且△
的周长为6.
(1)求椭圆 的方程;
(2)设椭圆的左顶点为A,直线
与直线:
分别相交于点
,问当
变化时,以线段
为直径的圆被
轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由。
正确答案
见解析
解析
(1)当时,直线的倾斜角为
,
所以:…………3分
解得:,……5分
所以椭圆方程是:;……6分
(2)当时,直线
的方程为:
,此时,M,N点的坐标分别是
,又
点坐标是(-2,0),由图可以得到P,Q两点坐标分别是(4,3),(4,-3),以PQ为直径的圆过右焦点,被
轴截得的弦长为6,猜测当
变化时,以PQ为直径的圆恒过焦点
,被
轴截得的弦长为定值6,……………………8分
证明如下:设点M,N点的坐标分别是,则直线
的方程是:
,
所以点的坐标是
,同理,点
的坐标是
,…………………9分
由方程组得到:
,
所以:,…………………11分
从而:
所以:以为直径的圆一定过右焦点
,被
轴截得的弦长为定值6。……………13分
知识点
已知两点、
,点
是直角坐标平面上的动点,若将点
的横坐标保持不变、纵坐标扩大到
倍后得到点
满足
。
(1) 求动点所在曲线
的轨迹方程;
(2)过点作斜率为
的直线
交曲线
于
两点,且满足
,又点
关于原点O的对称点为点
,试问四点
是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由。
正确答案
见解析
解析
(1)依据题意,有。
∵,
∴。
∴动点P所在曲线C的轨迹方程是。
(2)因直线过点
,且斜率为
,
故有,联立方程组
,得
。
设两曲线的交点为、
,可算得
。
又,点
与点
关于原点对称,
于是,可得点、
。
若线段、
的中垂线分别为
和
,则有
,
。
联立方程组,解得
和
的交点为
。
因此,可算得,
。
所以,四点共圆,圆心坐标为
,半径为
。
知识点
已知平面内一动点到椭圆
的右焦点
的距离与到直线
的距离相等。
(1)求动点的轨迹
的方程;
(2)过点(
)作倾斜角为
的直线与曲线
相交于
,
两点,若点
始终在以线段
为直径的圆内,求实数
的取值范围;
(3)过点(
)作直线与曲线
相交于
,
两点,问:是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?若存在,求出所有
的值;若不存在,请说明理由﹒
正确答案
见解析
解析
(1)易知椭圆的右焦点坐标为。
由抛物线的定义,知P点的轨迹是以为焦点,直线
为准线的抛物线。
所以,动点P的轨迹C的方程为。 ……………………………………4分
(2)由题意知,直线AB的方程为。
代入,得
。
设,则
。
因为点始终在以线段
为直径的圆内,
为钝角。
又,
,
,
。
即,
。
因此,
。
综上,实数的取值范围是
。
(3)设过点的直线方程为
,代入
,得
,设
,则
,
。
于是。
的中点坐标为
又
。
设存在直线满足条件,则
。
化简,得。
所以,对任意的
恒成立,
所以
解得,
。
所以,当时,存在直线
与以线段
为直径的圆始终相切,…………13分
知识点
已知椭圆的左右焦点分别是
,直线
与椭圆
交于两点
且当
时,M是椭圆
的上顶点,且△
的周长为6.
(1)求椭圆 的方程;
(2)设椭圆的左顶点为A,直线
与直线:
分别相交于点
,问当
变化时,以线段
为直径的圆被
轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由。
正确答案
见解析
解析
(1)当时,直线的倾斜角为
,所以:
…………3分
解得:,……5分 所以椭圆方程是:
;……6分
(2)当时,直线
的方程为:
,此时,M,N点的坐标分别是
,又
点坐标是(-2,0),由图可以得到P,Q两点坐标分别是(4,3),(4,-3),以PQ为直径的圆过右焦点,被
轴截得的弦长为6,猜测当
变化时,以PQ为直径的圆恒过焦点
,被
轴截得的弦长为定值6,……………………8分
证明如下:设点M,N点的坐标分别是,则直线
的方程是:
,
所以点的坐标是
,同理,点
的坐标是
,…………………9分
由方程组得到:
,
所以:,…………………11分
从而:
所以:以为直径的圆一定过右焦点
,被
轴截得的弦长为定值6。……………13分
知识点
如图,设椭圆:
(
)的左、右焦点分别为
,
,点
是其与
轴的一个交点,定点
(
,
),且
,
。
(1)求椭圆的标准方程;
(2)过点作直线
与椭圆
相交于不同的两点
,
(
,
与点
不重合),设直线
的斜率为
,直线
的斜率为
,证明:
为定值。
正确答案
见解析
解析
解析:
(1)解:设椭圆的半焦距为(
),由
(
,
)及
得,即
;由
得
,即
,所以
所以椭圆的标准方程为
(2)证明:若直线与
轴垂直,则
,
的坐标分别为(
,
),(
),
于是
若直线的斜率存在,则设斜率为
,
由(
,
)及
,
与点
不重合知
且
设,
,直线
的方程为
与椭圆的方程联立消去
得
得,
于是
综上得为定值2
知识点
已知椭圆的左、右焦点分别为
,若以
为圆心,
为半径作圆
,过椭圆上一点
作此圆的切线,切点为
,且
的最小值不小于
。
(1)证明:椭圆上的点到的最短距离为
;
(2)求椭圆的离心率的取值范围;
(3)设椭圆的短半轴长为,圆
与
轴的右交点为
,过点
作斜率为
的直线
与椭圆相交于
两点,若
,求直线
被圆
截得的弦长
的最大值。
正确答案
见解析
解析
解析:
(1)设椭圆上任一点的坐标为
,
点到右准线的距离为
,则由椭圆的第二定义知:
,
,又
,
当
时,
(4分)
(2)依题意设切线长
∴当且仅当取得最小值时
取得最小值,
,
(6分)
从而解得,故离心率
的取值范围是
(8分)
(3)依题意点的坐标为
,则直线的方程为
, 联立方程组
得,设
,则有
,
,代入直线方程得
,
,又
,
,
(11分)
,直线的方程为
,圆心
到直线
的距离
,由图象可知
,
,
,
,所以
(14分)
知识点
扫码查看完整答案与解析