热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

已知,点B是轴上的动点,过B作AB的垂线轴于点Q,若,.

(1)求点P的轨迹方程;

(2)是否存在定直线,以PM为直径的圆与直线的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。

正确答案

(1)y2=x(2)x=

解析

(1)设B(0,t),设Q(m,0),t2=|m|,m0, m=-4t2

 Q(-4t2,0),设P(x,y),则=(x-,y),=(-4t2-,0),

2=(-,2 t), +=2

(x-,y)+ (-4t2-,0)= (-,2 t),

 x=4t2,y=2 t, y2=x,此即点P的轨迹方程;       6分。

(2)由(1),点P的轨迹方程是y2=x;设P(y2,y),M (4,0) ,则以PM为直径的圆的圆心即PM的中点T(), 以PM为直径的圆与直线x=a的相交弦长:

L=2

=2=2      10分

若a为常数,则对于任意实数y,L为定值的条件是a-=0, 即a=时,L=

存在定直线x=,以PM为直径的圆与直线x=的相交弦长为定值

知识点

相关点法求轨迹方程圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知为椭圆的左右焦点,点为其上一点,且有

(1)求椭圆的标准方程;

(2)过的直线与椭圆交于两点,过平行的直线与椭圆交于两点,求四边形的面积的最大值。

正确答案

(1)(2)6

解析

解析:(1)设椭圆的标准方程为

由已知       ……………………2分

又点在椭圆上, 

椭圆的标准方程为                  ……………………4分

(2)由题意可知,四边形为平行四边形  =4

设直线的方程为,且

          ……………………6分

=+==

== …………………………8分

,则   ==,……… 10分

上单调递增

  的最大值为

所以的最大值为6.            ………………………………12分

知识点

椭圆的定义及标准方程圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

已知椭圆的左右顶点分别为在椭圆上,关于原点的对称点,椭圆的右焦点恰好是的重心。

(1)求椭圆的标准方程;

(2)过椭圆左焦点且斜率为的直线交椭圆与两点,若,求的值。

正确答案

见解析。

解析

(1)

的重心是,由三角形重心的性质知:

∴椭圆E的方程为:

(2)设点,由得直线CD的直线方程为

由方程组消去,整理得

       

由已知得:,解得

知识点

平面向量数量积的运算向量在几何中的应用椭圆的定义及标准方程直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

已知椭圆抛物线的焦点均在轴上,的中心和的顶点均为原点从每条曲线上取两个点,将其坐标记录于下表中:

(1)求的标准方程;

(2)设斜率不为的动直线有且只有一个公共点且与的准线相交于点试探究:在坐标平面内是否存在定点使得以为直径的圆恒过点若存在,求出点的坐标;若不存在,请说明理由。

正确答案

见解析

解析

解析:(1)设的标准方程分别为:

代入抛物线方程中得到的解相同,…………………………2分,

在椭圆上,代入椭圆方程得的标准方程分别为             …………………………5分

(2)设直线的方程为将其代入消去并化简整理得

相切,

…………………………7分,

设切点又直线的准线的交点为直径的圆的方程为

…………………………10分,

化简并整理得恒成立,故即存在定点合题意。                …………………………12分

知识点

椭圆的定义及标准方程抛物线的标准方程和几何性质圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 14 分

如图,设椭圆中心在坐标原点,是它的两个顶点,直线相交于点,与椭圆相交于两点。

(1)若,求的值。

(2)求四边形面积的最大值。

正确答案

见解析

解析

(1)依题可设得椭圆的方程为

直线的方程分别为

,其中,且满足方程,故

在直线上得

所以,化简得:,解得

(2)解法1:根据点到直线的距离公式和①式知,点的距离分别为:

,所以四边形的面积为

,即时,上式取等号。所以的最大值为

解法2:由题设,

,由①得,故四边形的面积为时,上式取等号。所以的最大值为

知识点

向量在几何中的应用椭圆的几何性质直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

如图,已知直线与抛物线和圆都相切,是抛物线的焦点。

(1)求的值;

(2)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(3)在(2)的条件下,记点所在的定直线为,直线轴交点为,连接交抛物线两点,求△的面积的取值范围。

正确答案

见解析

解析

(1)由已知,圆的圆心为,半径.

由题设圆心到直线的距离,即

解得.………………3分

与抛物线的切点为,又,得.

代入直线方程得:

.………………5分

(2)由(1)知抛物线方程为,焦点.

,由(1)知以为切点的切线的方程为.

,得切线交y轴的B点坐标为

所以

,即点在定直线上.……………8分

(3)设直线,代入

,设的横坐标分别为

,即△的面积S范围是.  ……………13分

知识点

直线与圆的位置关系圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 15 分

如图,两条相交线段的四个端点都在椭圆上,其中,直线的方程为,直线的方程为

(1)若,求的值;

(2)探究:是否存在常数,当变化时,恒有

正确答案

见解析

解析

(1)由

解得

因为,所以

,则

化简得,……5分

,联立方程组,解得,或

因为平分,所以不合,故

(2)设,由,得

若存常数,当变化时,恒有,则由(1)知只可能

①当时,取等价于

,此式恒成立。

所以,存常数,当变化时,恒有

②当时,取,由对称性同理可知结论成立。

故,存常数,当变化时,恒有

知识点

圆锥曲线的定点、定值问题圆锥曲线中的探索性问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 12 分

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心到抛物线准线的距离为

(1)求抛物线的方程;

(2)当的角平分线垂直轴时,求直线的斜率;

(3)若直线轴上的截距为,求的最小值。

正确答案

(1)(2)(3)-11

解析

解析:(1)∵点到抛物线准线的距离为

,即抛物线的方程为  。----------------------------------------------2分

(2)法一:∵当的角平分线垂直轴时,点,∴

,   ∴ 

。    。---------------------------6分

法二:∵当的角平分线垂直轴时,点,∴,可得,∴直线的方程为

联立方程组,得

   ∴

同理可得,∴。---------------------------6分

(3)法一:设,∵,∴

可得,直线的方程为

同理,直线的方程为

∴直线的方程为,  令,可得

关于的函数在单调递增,   ∴。------------------------------12分

法二:设点

为圆心,为半径的圆方程为,........................................................................................................................................ ①

方程:。....................................................... ②

①-②得:直线的方程为

时,直线轴上的截距

关于的函数在单调递增,   ∴。 ------------------------12分

知识点

直线的倾斜角与斜率抛物线的标准方程和几何性质圆锥曲线中的范围、最值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

已知椭圆的方程为,其中.

(1)求椭圆形状最圆时的方程;

(2)若椭圆最圆时任意两条互相垂直的切线相交于点,证明:点在一个定圆上.

正确答案

见解析。

解析

(1)根据已知条件有,且,故椭圆的长轴在轴上.

,当且仅当时取等号.

由于椭圆的离心率最小时其形状最圆,故最圆的椭圆方程为.

(2)设交点,过交点的直线与椭圆相切.

(i)当斜率不存在或等于零时,易得点的坐标为.   

(ii)当斜率存在且非零时,则设斜率为,则直线

与椭圆方程联立消,得:.

由相切,

化简整理得. ①

因过椭圆外一点有两条直线与椭圆相切,由已知两切线垂直,故,而为方程①的两根,

,整理得:.

也满足上式,

点的轨迹方程为,即点在定圆上.  

知识点

椭圆的定义及标准方程圆锥曲线的定点、定值问题直线、圆及圆锥曲线的交汇问题
1
题型:简答题
|
简答题 · 13 分

已知圆C1的方程为,定直线l的方程为,动圆C与圆C1外切,且与直线l相切。

(1)求动圆圆心C的轨迹M的方程;

(2)斜率为k的直线l与轨迹M相切于第一象限的点P,过点P作直线l的垂线恰好经过点A(0,6),并交轨迹M于异于点P的点Q,记为轨迹M与直线PQ围成的封闭图形的面积,求的值。

正确答案

见解析

解析

解(1)设动圆圆心C的坐标为,动圆半径为R,则

,且

可得 

由于圆C1在直线l的上方,所以动圆C的圆心C应该在直线l的上方,所以有,从而得,整理得,即为动圆圆心C的轨迹M的方程,                              

(2)如图示,设点P的坐标为,则切线的斜率为,可得直线PQ的斜率为,所以直线PQ的方程为,由于该直线经过点A(0,6),所以有,得,因为点P在第一象限,所以,点P坐标为(4,2),直线PQ的方程为,                

把直线PQ的方程与轨迹M的方程联立得,解得或4,可得点Q的坐标为,所以

, 

知识点

定义法求轨迹方程直线、圆及圆锥曲线的交汇问题
百度题库 > 高考 > 理科数学 > 圆锥曲线的综合问题

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题